Stochastic Analysis in Discrete and Continuous Settings

Stochastic Analysis in Discrete and Continuous Settings
Author :
Publisher : Springer
Total Pages : 322
Release :
ISBN-10 : 9783642023804
ISBN-13 : 3642023800
Rating : 4/5 (04 Downloads)

Synopsis Stochastic Analysis in Discrete and Continuous Settings by : Nicolas Privault

This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.

Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time
Author :
Publisher : Springer Science & Business Media
Total Pages : 299
Release :
ISBN-10 : 9780387766164
ISBN-13 : 0387766162
Rating : 4/5 (64 Downloads)

Synopsis Stochastic Control in Discrete and Continuous Time by : Atle Seierstad

This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9781483269276
ISBN-13 : 1483269272
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Processes, Finance and Control

Stochastic Processes, Finance and Control
Author :
Publisher : World Scientific
Total Pages : 605
Release :
ISBN-10 : 9789814383301
ISBN-13 : 9814383309
Rating : 4/5 (01 Downloads)

Synopsis Stochastic Processes, Finance and Control by : Robert J. Elliot

This Festschrift is dedicated to Robert J Elliott on the occasion of his 70th birthday It brings together a collection of chapters by distinguished and eminent scholars in the fields of stochastic processes, filtering and control, as well as their applications to mathematical finance It presents cutting edge developments in these fields and is a valuable source of references for researchers, graduate students and market practitioners in mathematical finance and financial engineering Topics include the theory of stochastic processes, differential and stochastic games, mathematical finance, filtering and control.

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott
Author :
Publisher : World Scientific
Total Pages : 605
Release :
ISBN-10 : 9789814483919
ISBN-13 : 9814483915
Rating : 4/5 (19 Downloads)

Synopsis Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott by : Samuel N Cohen

This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Introduction to Stochastic Calculus with Applications

Introduction to Stochastic Calculus with Applications
Author :
Publisher : Imperial College Press
Total Pages : 431
Release :
ISBN-10 : 9781860945557
ISBN-13 : 1860945554
Rating : 4/5 (57 Downloads)

Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner

This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Author :
Publisher : Springer
Total Pages : 282
Release :
ISBN-10 : 9783319456140
ISBN-13 : 3319456148
Rating : 4/5 (40 Downloads)

Synopsis Essentials of Stochastic Processes by : Richard Durrett

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Stochastic Analysis and Related Topics

Stochastic Analysis and Related Topics
Author :
Publisher : Birkhäuser
Total Pages : 224
Release :
ISBN-10 : 9783319596716
ISBN-13 : 3319596713
Rating : 4/5 (16 Downloads)

Synopsis Stochastic Analysis and Related Topics by : Fabrice Baudoin

The articles in this collection are a sampling of some of the research presented during the conference “Stochastic Analysis and Related Topics”, held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Bañuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Lévy processes, Brownian motion on manifolds, and spin glasses, among other topics.

Stochastic Processes and Applications

Stochastic Processes and Applications
Author :
Publisher : Springer
Total Pages : 345
Release :
ISBN-10 : 9781493913237
ISBN-13 : 1493913239
Rating : 4/5 (37 Downloads)

Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.