Statistical Methods for Modeling Human Dynamics

Statistical Methods for Modeling Human Dynamics
Author :
Publisher : Taylor & Francis
Total Pages : 445
Release :
ISBN-10 : 9781135262594
ISBN-13 : 1135262594
Rating : 4/5 (94 Downloads)

Synopsis Statistical Methods for Modeling Human Dynamics by : Sy-Miin Chow

This interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.

Statistical Methods for Modeling Human Dynamics

Statistical Methods for Modeling Human Dynamics
Author :
Publisher : Routledge
Total Pages : 442
Release :
ISBN-10 : 9781135262587
ISBN-13 : 1135262586
Rating : 4/5 (87 Downloads)

Synopsis Statistical Methods for Modeling Human Dynamics by : Sy-Miin Chow

This interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.

Continuous Time Modeling in the Behavioral and Related Sciences

Continuous Time Modeling in the Behavioral and Related Sciences
Author :
Publisher : Springer
Total Pages : 446
Release :
ISBN-10 : 9783319772196
ISBN-13 : 3319772198
Rating : 4/5 (96 Downloads)

Synopsis Continuous Time Modeling in the Behavioral and Related Sciences by : Kees van Montfort

This unique book provides an overview of continuous time modeling in the behavioral and related sciences. It argues that the use of discrete time models for processes that are in fact evolving in continuous time produces problems that make their application in practice highly questionable. One main issue is the dependence of discrete time parameter estimates on the chosen time interval, which leads to incomparability of results across different observation intervals. Continuous time modeling by means of differential equations offers a powerful approach for studying dynamic phenomena, yet the use of this approach in the behavioral and related sciences such as psychology, sociology, economics and medicine, is still rare. This is unfortunate, because in these fields often only a few discrete time (sampled) observations are available for analysis (e.g., daily, weekly, yearly, etc.). However, as emphasized by Rex Bergstrom, the pioneer of continuous-time modeling in econometrics, neither human beings nor the economy cease to exist in between observations. In 16 chapters, the book addresses a vast range of topics in continuous time modeling, from approaches that closely mimic traditional linear discrete time models to highly nonlinear state space modeling techniques. Each chapter describes the type of research questions and data that the approach is most suitable for, provides detailed statistical explanations of the models, and includes one or more applied examples. To allow readers to implement the various techniques directly, accompanying computer code is made available online. The book is intended as a reference work for students and scientists working with longitudinal data who have a Master's- or early PhD-level knowledge of statistics.

Statistical Modeling for Naturalists

Statistical Modeling for Naturalists
Author :
Publisher : Cambridge Scholars Publishing
Total Pages : 210
Release :
ISBN-10 : 9781527579538
ISBN-13 : 1527579530
Rating : 4/5 (38 Downloads)

Synopsis Statistical Modeling for Naturalists by : Pedro F. Quintana Ascencio

This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.

The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis

The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis
Author :
Publisher : Oxford University Press
Total Pages : 784
Release :
ISBN-10 : 9780199934904
ISBN-13 : 0199934908
Rating : 4/5 (04 Downloads)

Synopsis The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis by : Todd D. Little

Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.

Longitudinal Multivariate Psychology

Longitudinal Multivariate Psychology
Author :
Publisher : Routledge
Total Pages : 363
Release :
ISBN-10 : 9781351662727
ISBN-13 : 1351662724
Rating : 4/5 (27 Downloads)

Synopsis Longitudinal Multivariate Psychology by : Emilio Ferrer

This volume presents a collection of chapters focused on the study of multivariate change. As people develop and change, multivariate measurement of that change and analysis of those measures can illuminate the regularities in the trajectories of individual development, as well as time-dependent changes in population averages. As longitudinal data have recently become much more prevalent in psychology and the social sciences, models of change have become increasingly important. This collection focuses on methodological, statistical, and modeling aspects of multivariate change and applications of longitudinal models to the study of psychological processes. The volume is divided into three major sections: Extension of latent change models, Measurement and testing issues in longitudinal modeling, and Novel applications of multivariate longitudinal methodology. It is intended for advanced students and researchers interested in learning about state-of-the-art techniques for longitudinal data analysis, as well as understanding the history and development of such techniques.

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases
Author :
Publisher : John Wiley & Sons
Total Pages : 496
Release :
ISBN-10 : 9781118629932
ISBN-13 : 1118629930
Rating : 4/5 (32 Downloads)

Synopsis Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases by : Dongmei Chen

Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.

Analytical Methods for Dynamic Modelers

Analytical Methods for Dynamic Modelers
Author :
Publisher : MIT Press
Total Pages : 443
Release :
ISBN-10 : 9780262331432
ISBN-13 : 0262331438
Rating : 4/5 (32 Downloads)

Synopsis Analytical Methods for Dynamic Modelers by : Hazhir Rahmandad

A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel

Modeling with Data

Modeling with Data
Author :
Publisher : Princeton University Press
Total Pages : 471
Release :
ISBN-10 : 9781400828746
ISBN-13 : 1400828740
Rating : 4/5 (46 Downloads)

Synopsis Modeling with Data by : Ben Klemens

Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods. Klemens's accessible survey describes these models in a unified and nontraditional manner, providing alternative ways of looking at statistical concepts that often befuddle students. The book includes nearly one hundred sample programs of all kinds. Links to these programs will be available on this page at a later date. Modeling with Data will interest anyone looking for a comprehensive guide to these powerful statistical tools, including researchers and graduate students in the social sciences, biology, engineering, economics, and applied mathematics.

Dynamic Models in Biology

Dynamic Models in Biology
Author :
Publisher : Princeton University Press
Total Pages : 352
Release :
ISBN-10 : 9781400840960
ISBN-13 : 1400840961
Rating : 4/5 (60 Downloads)

Synopsis Dynamic Models in Biology by : Stephen P. Ellner

From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.