Statistical Machine Learning for Human Behaviour Analysis

Statistical Machine Learning for Human Behaviour Analysis
Author :
Publisher : MDPI
Total Pages : 300
Release :
ISBN-10 : 9783039362288
ISBN-13 : 3039362283
Rating : 4/5 (88 Downloads)

Synopsis Statistical Machine Learning for Human Behaviour Analysis by : Thomas Moeslund

This Special Issue focused on novel vision-based approaches, mainly related to computer vision and machine learning, for the automatic analysis of human behaviour. We solicited submissions on the following topics: information theory-based pattern classification, biometric recognition, multimodal human analysis, low resolution human activity analysis, face analysis, abnormal behaviour analysis, unsupervised human analysis scenarios, 3D/4D human pose and shape estimation, human analysis in virtual/augmented reality, affective computing, social signal processing, personality computing, activity recognition, human tracking in the wild, and application of information-theoretic concepts for human behaviour analysis. In the end, 15 papers were accepted for this special issue. These papers, that are reviewed in this editorial, analyse human behaviour from the aforementioned perspectives, defining in most of the cases the state of the art in their corresponding field.

Behavior Analysis with Machine Learning Using R

Behavior Analysis with Machine Learning Using R
Author :
Publisher : CRC Press
Total Pages : 370
Release :
ISBN-10 : 9781000484250
ISBN-13 : 1000484254
Rating : 4/5 (50 Downloads)

Synopsis Behavior Analysis with Machine Learning Using R by : Enrique Garcia Ceja

Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.

Understanding Machine Learning

Understanding Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 415
Release :
ISBN-10 : 9781107057135
ISBN-13 : 1107057132
Rating : 4/5 (35 Downloads)

Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Interpretable Machine Learning

Interpretable Machine Learning
Author :
Publisher : Lulu.com
Total Pages : 320
Release :
ISBN-10 : 9780244768522
ISBN-13 : 0244768528
Rating : 4/5 (22 Downloads)

Synopsis Interpretable Machine Learning by : Christoph Molnar

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Methods of Behavior Analysis in Neuroscience

Methods of Behavior Analysis in Neuroscience
Author :
Publisher : CRC Press
Total Pages : 341
Release :
ISBN-10 : 9781420041811
ISBN-13 : 1420041819
Rating : 4/5 (11 Downloads)

Synopsis Methods of Behavior Analysis in Neuroscience by : Jerry J. Buccafusco

Using the most well-studied behavioral analyses of animal subjects to promote a better understanding of the effects of disease and the effects of new therapeutic treatments on human cognition, Methods of Behavior Analysis in Neuroscience provides a reference manual for molecular and cellular research scientists in both academia and the pharmaceutic

Visual Analysis of Behaviour

Visual Analysis of Behaviour
Author :
Publisher : Springer Science & Business Media
Total Pages : 358
Release :
ISBN-10 : 9780857296702
ISBN-13 : 0857296701
Rating : 4/5 (02 Downloads)

Synopsis Visual Analysis of Behaviour by : Shaogang Gong

This book presents a comprehensive treatment of visual analysis of behaviour from computational-modelling and algorithm-design perspectives. Topics: covers learning-group activity models, unsupervised behaviour profiling, hierarchical behaviour discovery, learning behavioural context, modelling rare behaviours, and “man-in-the-loop” active learning; examines multi-camera behaviour correlation, person re-identification, and “connecting-the-dots” for abnormal behaviour detection; discusses Bayesian information criterion, Bayesian networks, “bag-of-words” representation, canonical correlation analysis, dynamic Bayesian networks, Gaussian mixtures, and Gibbs sampling; investigates hidden conditional random fields, hidden Markov models, human silhouette shapes, latent Dirichlet allocation, local binary patterns, locality preserving projection, and Markov processes; explores probabilistic graphical models, probabilistic topic models, space-time interest points, spectral clustering, and support vector machines.

Human Behavior Analysis: Sensing and Understanding

Human Behavior Analysis: Sensing and Understanding
Author :
Publisher : Springer Nature
Total Pages : 277
Release :
ISBN-10 : 9789811521096
ISBN-13 : 9811521093
Rating : 4/5 (96 Downloads)

Synopsis Human Behavior Analysis: Sensing and Understanding by : Zhiwen Yu

Over the last decade, there has been a growing interest in human behavior analysis, motivated by societal needs such as security, natural interfaces, affective computing, and assisted living. However, the accurate and non-invasive detection and recognition of human behavior remain major challenges and the focus of many research efforts. Traditionally, in order to identify human behavior, it is first necessary to continuously collect the readings of physical sensing devices (e.g., camera, GPS, and RFID), which can be worn on human bodies, attached to objects, or deployed in the environment. Afterwards, using recognition algorithms or classification models, the behavior types can be identified so as to facilitate advanced applications. Although such traditional approaches deliver satisfactory performance and are still widely used, most of them are intrusive and require specific sensing devices, raising issues such as privacy and deployment costs. In this book, we will present our latest findings on non-invasive sensing and understanding of human behavior. Specifically, this book differs from existing literature in the following senses. Firstly, we focus on approaches that are based on non-invasive sensing technologies, including both sensor-based and device-free variants. Secondly, while most existing studies examine individual behaviors, we will systematically elaborate on how to understand human behaviors of various granularities, including not only individual-level but also group-level and community-level behaviors. Lastly, we will discuss the most important scientific problems and open issues involved in human behavior analysis.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 9781108569323
ISBN-13 : 1108569323
Rating : 4/5 (23 Downloads)

Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction
Author :
Publisher : Springer Nature
Total Pages : 707
Release :
ISBN-10 : 9783030890100
ISBN-13 : 3030890104
Rating : 4/5 (00 Downloads)

Synopsis Multivariate Statistical Machine Learning Methods for Genomic Prediction by : Osval Antonio Montesinos López

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Behavioral Analysis

Behavioral Analysis
Author :
Publisher : Prof. Dr. Bilal Semih Bozdemir
Total Pages : 459
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis Behavioral Analysis by : Prof. Dr. Bilal Semih Bozdemir

Behavioral Analysis: Unlocking the Secrets of Human Behavior Understanding the Foundations of Behavior The Role of Genetics and Environment Cognitive Processes and Decision-Making Emotions and Their Impact on Behavior Personality Traits and Their Influence Learning and Conditioning Principles Motivation and Goal-Setting Perception and Attention Biases Social Interactions and Interpersonal Dynamics Developmental Factors Shaping Behavior Organizational Behavior and Workplace Dynamics Clinical Applications of Behavioral Analysis Ethical Considerations in Behavioral Research