An Introduction to Statistical Genetic Data Analysis

An Introduction to Statistical Genetic Data Analysis
Author :
Publisher : MIT Press
Total Pages : 433
Release :
ISBN-10 : 9780262357449
ISBN-13 : 0262357445
Rating : 4/5 (49 Downloads)

Synopsis An Introduction to Statistical Genetic Data Analysis by : Melinda C. Mills

A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.

Information Criteria and Statistical Modeling

Information Criteria and Statistical Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 282
Release :
ISBN-10 : 9780387718866
ISBN-13 : 0387718869
Rating : 4/5 (66 Downloads)

Synopsis Information Criteria and Statistical Modeling by : Sadanori Konishi

Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It’s a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They’re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.

Statistical Methods for the Information Professional

Statistical Methods for the Information Professional
Author :
Publisher : Information Today, Inc.
Total Pages : 248
Release :
ISBN-10 : 1573871109
ISBN-13 : 9781573871105
Rating : 4/5 (09 Downloads)

Synopsis Statistical Methods for the Information Professional by : Liwen Vaughan

For most of us, "painless" is not the word that comes to mind when we think of statistics, but author and educator Liwen Vaughan wants to change that. In this unique and useful book, Vaughan clearly explains the statistical methods used in information science research, focusing on basic logic rather than mathematical intricacies. Her emphasis is on the meaning of statistics, when and how to apply them, and how to interpret the results of statistical analysis. Through the use of real-world examples, she shows how statistics can be used to improve services, make better decisions, and conduct more effective research. Whether you are doing statistical analysis or simply need to better understand the statistics you encounter in professional literature and the media, this book will be a valuable addition to your personal toolkit. Includes more than 80 helpful figures and tables, 7 appendices, bibliography, index.

Statistical Methods

Statistical Methods
Author :
Publisher : Elsevier
Total Pages : 694
Release :
ISBN-10 : 9780080498225
ISBN-13 : 0080498221
Rating : 4/5 (25 Downloads)

Synopsis Statistical Methods by : Rudolf J. Freund

This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters

Statistical Analysis of Spherical Data

Statistical Analysis of Spherical Data
Author :
Publisher : Cambridge University Press
Total Pages : 358
Release :
ISBN-10 : 0521456991
ISBN-13 : 9780521456999
Rating : 4/5 (91 Downloads)

Synopsis Statistical Analysis of Spherical Data by : N. I. Fisher

This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.

Statistical Data Analysis

Statistical Data Analysis
Author :
Publisher : Oxford University Press
Total Pages : 218
Release :
ISBN-10 : 9780198501565
ISBN-13 : 0198501560
Rating : 4/5 (65 Downloads)

Synopsis Statistical Data Analysis by : Glen Cowan

This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).

Statistical Data Analysis and Entropy

Statistical Data Analysis and Entropy
Author :
Publisher : Springer Nature
Total Pages : 263
Release :
ISBN-10 : 9789811525520
ISBN-13 : 9811525528
Rating : 4/5 (20 Downloads)

Synopsis Statistical Data Analysis and Entropy by : Nobuoki Eshima

This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.

The Nature of Statistical Learning Theory

The Nature of Statistical Learning Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 324
Release :
ISBN-10 : 9781475732641
ISBN-13 : 1475732643
Rating : 4/5 (41 Downloads)

Synopsis The Nature of Statistical Learning Theory by : Vladimir Vapnik

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.

Statistical Methods in Water Resources

Statistical Methods in Water Resources
Author :
Publisher : Elsevier
Total Pages : 539
Release :
ISBN-10 : 9780080875088
ISBN-13 : 0080875084
Rating : 4/5 (88 Downloads)

Synopsis Statistical Methods in Water Resources by : D.R. Helsel

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

Statistical and Inductive Inference by Minimum Message Length

Statistical and Inductive Inference by Minimum Message Length
Author :
Publisher : Springer Science & Business Media
Total Pages : 456
Release :
ISBN-10 : 038723795X
ISBN-13 : 9780387237954
Rating : 4/5 (5X Downloads)

Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace

The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.