Speech Enhancement in the STFT Domain

Speech Enhancement in the STFT Domain
Author :
Publisher : Springer Science & Business Media
Total Pages : 112
Release :
ISBN-10 : 9783642232503
ISBN-13 : 3642232507
Rating : 4/5 (03 Downloads)

Synopsis Speech Enhancement in the STFT Domain by : Jacob Benesty

This work addresses this problem in the short-time Fourier transform (STFT) domain. We divide the general problem into five basic categories depending on the number of microphones being used and whether the interframe or interband correlation is considered. The first category deals with the single-channel problem where STFT coefficients at different frames and frequency bands are assumed to be independent. In this case, the noise reduction filter in each frequency band is basically a real gain. Since a gain does not improve the signal-to-noise ratio (SNR) for any given subband and frame, the noise reduction is basically achieved by liftering the subbands and frames that are less noisy while weighing down on those that are more noisy. The second category also concerns the single-channel problem. The difference is that now the interframe correlation is taken into account and a filter is applied in each subband instead of just a gain. The advantage of using the interframe correlation is that we can improve not only the long-time fullband SNR, but the frame-wise subband SNR as well. The third and fourth classes discuss the problem of multichannel noise reduction in the STFT domain with and without interframe correlation, respectively. In the last category, we consider the interband correlation in the design of the noise reduction filters. We illustrate the basic principle for the single-channel case as an example, while this concept can be generalized to other scenarios. In all categories, we propose different optimization cost functions from which we derive the optimal filters and we also define the performance measures that help analyzing them.

Speech Enhancement

Speech Enhancement
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 354024039X
ISBN-13 : 9783540240396
Rating : 4/5 (9X Downloads)

Synopsis Speech Enhancement by : Shoji Makino

We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field.

Speech Enhancement

Speech Enhancement
Author :
Publisher : Elsevier
Total Pages : 143
Release :
ISBN-10 : 9780128002537
ISBN-13 : 0128002530
Rating : 4/5 (37 Downloads)

Synopsis Speech Enhancement by : Jacob Benesty

Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes of methods and have been introduced in somewhat different contexts. Linear filtering methods originate in stochastic processes, while subspace methods have largely been based on developments in numerical linear algebra and matrix approximation theory. This book bridges the gap between these two classes of methods by showing how the ideas behind subspace methods can be incorporated into traditional linear filtering. In the context of subspace methods, the enhancement problem can then be seen as a classical linear filter design problem. This means that various solutions can more easily be compared and their performance bounded and assessed in terms of noise reduction and speech distortion. The book shows how various filter designs can be obtained in this framework, including the maximum SNR, Wiener, LCMV, and MVDR filters, and how these can be applied in various contexts, like in single-channel and multichannel speech enhancement, and in both the time and frequency domains. - First short book treating subspace approaches in a unified way for time and frequency domains, single-channel, multichannel, as well as binaural, speech enhancement - Bridges the gap between optimal filtering methods and subspace approaches - Includes original presentation of subspace methods from different perspectives

Fundamentals of Speech Enhancement

Fundamentals of Speech Enhancement
Author :
Publisher : Springer
Total Pages : 112
Release :
ISBN-10 : 9783319745244
ISBN-13 : 3319745247
Rating : 4/5 (44 Downloads)

Synopsis Fundamentals of Speech Enhancement by : Jacob Benesty

This book presents and develops several important concepts of speech enhancement in a simple but rigorous way. Many of the ideas are new; not only do they shed light on this old problem but they also offer valuable tips on how to improve on some well-known conventional approaches. The book unifies all aspects of speech enhancement, from single channel, multichannel, beamforming, time domain, frequency domain and time–frequency domain, to binaural in a clear and flexible framework. It starts with an exhaustive discussion on the fundamental best (linear and nonlinear) estimators, showing how they are connected to various important measures such as the coefficient of determination, the correlation coefficient, the conditional correlation coefficient, and the signal-to-noise ratio (SNR). It then goes on to show how to exploit these measures in order to derive all kinds of noise reduction algorithms that can offer an accurate and versatile compromise between noise reduction and speech distortion.

Canonical Correlation Analysis in Speech Enhancement

Canonical Correlation Analysis in Speech Enhancement
Author :
Publisher : Springer
Total Pages : 124
Release :
ISBN-10 : 9783319670201
ISBN-13 : 3319670204
Rating : 4/5 (01 Downloads)

Synopsis Canonical Correlation Analysis in Speech Enhancement by : Jacob Benesty

This book focuses on the application of canonical correlation analysis (CCA) to speech enhancement using the filtering approach. The authors explain how to derive different classes of time-domain and time-frequency-domain noise reduction filters, which are optimal from the CCA perspective for both single-channel and multichannel speech enhancement. Enhancement of noisy speech has been a challenging problem for many researchers over the past few decades and remains an active research area. Typically, speech enhancement algorithms operate in the short-time Fourier transform (STFT) domain, where the clean speech spectral coefficients are estimated using a multiplicative gain function. A filtering approach, which can be performed in the time domain or in the subband domain, obtains an estimate of the clean speech sample at every time instant or time-frequency bin by applying a filtering vector to the noisy speech vector. Compared to the multiplicative gain approach, the filtering approach more naturally takes into account the correlation of the speech signal in adjacent time frames. In this study, the authors pursue the filtering approach and show how to apply CCA to the speech enhancement problem. They also address the problem of adaptive beamforming from the CCA perspective, and show that the well-known Wiener and minimum variance distortionless response (MVDR) beamformers are particular cases of a general class of CCA-based adaptive beamformers.

Audio Source Separation

Audio Source Separation
Author :
Publisher : Springer
Total Pages : 389
Release :
ISBN-10 : 9783319730318
ISBN-13 : 3319730312
Rating : 4/5 (18 Downloads)

Synopsis Audio Source Separation by : Shoji Makino

This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.

Audio Source Separation and Speech Enhancement

Audio Source Separation and Speech Enhancement
Author :
Publisher : John Wiley & Sons
Total Pages : 628
Release :
ISBN-10 : 9781119279914
ISBN-13 : 1119279917
Rating : 4/5 (14 Downloads)

Synopsis Audio Source Separation and Speech Enhancement by : Emmanuel Vincent

Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.

Speech Processing in Modern Communication

Speech Processing in Modern Communication
Author :
Publisher : Springer Science & Business Media
Total Pages : 342
Release :
ISBN-10 : 9783642111303
ISBN-13 : 3642111300
Rating : 4/5 (03 Downloads)

Synopsis Speech Processing in Modern Communication by : Israel Cohen

Modern communication devices, such as mobile phones, teleconferencing systems, VoIP, etc., are often used in noisy and reverberant environments. Therefore, signals picked up by the microphones from telecommunication devices contain not only the desired near-end speech signal, but also interferences such as the background noise, far-end echoes produced by the loudspeaker, and reverberations of the desired source. These interferences degrade the fidelity and intelligibility of the near-end speech in human-to-human telecommunications and decrease the performance of human-to-machine interfaces (i.e., automatic speech recognition systems). The proposed book deals with the fundamental challenges of speech processing in modern communication, including speech enhancement, interference suppression, acoustic echo cancellation, relative transfer function identification, source localization, dereverberation, and beamforming in reverberant environments. Enhancement of speech signals is necessary whenever the source signal is corrupted by noise. In highly non-stationary noise environments, noise transients, and interferences may be extremely annoying. Acoustic echo cancellation is used to eliminate the acoustic coupling between the loudspeaker and the microphone of a communication device. Identification of the relative transfer function between sensors in response to a desired speech signal enables to derive a reference noise signal for suppressing directional or coherent noise sources. Source localization, dereverberation, and beamforming in reverberant environments further enable to increase the intelligibility of the near-end speech signal.

Robust Speech Recognition of Uncertain or Missing Data

Robust Speech Recognition of Uncertain or Missing Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 387
Release :
ISBN-10 : 9783642213175
ISBN-13 : 3642213170
Rating : 4/5 (75 Downloads)

Synopsis Robust Speech Recognition of Uncertain or Missing Data by : Dorothea Kolossa

Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition. The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.

Single Channel Phase-Aware Signal Processing in Speech Communication

Single Channel Phase-Aware Signal Processing in Speech Communication
Author :
Publisher : John Wiley & Sons
Total Pages : 253
Release :
ISBN-10 : 9781119238812
ISBN-13 : 1119238811
Rating : 4/5 (12 Downloads)

Synopsis Single Channel Phase-Aware Signal Processing in Speech Communication by : Pejman Mowlaee

An overview on the challenging new topic of phase-aware signal processing Speech communication technology is a key factor in human-machine interaction, digital hearing aids, mobile telephony, and automatic speech/speaker recognition. With the proliferation of these applications, there is a growing requirement for advanced methodologies that can push the limits of the conventional solutions relying on processing the signal magnitude spectrum. Single-Channel Phase-Aware Signal Processing in Speech Communication provides a comprehensive guide to phase signal processing and reviews the history of phase importance in the literature, basic problems in phase processing, fundamentals of phase estimation together with several applications to demonstrate the usefulness of phase processing. Key features: Analysis of recent advances demonstrating the positive impact of phase-based processing in pushing the limits of conventional methods. Offers unique coverage of the historical context, fundamentals of phase processing and provides several examples in speech communication. Provides a detailed review of many references and discusses the existing signal processing techniques required to deal with phase information in different applications involved with speech. The book supplies various examples and MATLAB® implementations delivered within the PhaseLab toolbox. Single-Channel Phase-Aware Signal Processing in Speech Communication is a valuable single-source for students, non-expert DSP engineers, academics and graduate students.