Sparse Graphical Modeling For High Dimensional Data
Download Sparse Graphical Modeling For High Dimensional Data full books in PDF, epub, and Kindle. Read online free Sparse Graphical Modeling For High Dimensional Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Faming Liang |
Publisher |
: CRC Press |
Total Pages |
: 150 |
Release |
: 2023-08-02 |
ISBN-10 |
: 9780429582905 |
ISBN-13 |
: 0429582900 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Sparse Graphical Modeling for High Dimensional Data by : Faming Liang
This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines. Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference
Author |
: Peter Bühlmann |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 568 |
Release |
: 2011-06-08 |
ISBN-10 |
: 9783642201929 |
ISBN-13 |
: 364220192X |
Rating |
: 4/5 (29 Downloads) |
Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Author |
: Martin J. Wainwright |
Publisher |
: Cambridge University Press |
Total Pages |
: 571 |
Release |
: 2019-02-21 |
ISBN-10 |
: 9781108498029 |
ISBN-13 |
: 1108498027 |
Rating |
: 4/5 (29 Downloads) |
Synopsis High-Dimensional Statistics by : Martin J. Wainwright
A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Author |
: Weixin Yao |
Publisher |
: CRC Press |
Total Pages |
: 398 |
Release |
: 2024-04-18 |
ISBN-10 |
: 9781040009871 |
ISBN-13 |
: 1040009875 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Mixture Models by : Weixin Yao
Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.
Author |
: Ciprian M. Crainiceanu |
Publisher |
: CRC Press |
Total Pages |
: 338 |
Release |
: 2024-03-11 |
ISBN-10 |
: 9781003856306 |
ISBN-13 |
: 1003856306 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Functional Data Analysis with R by : Ciprian M. Crainiceanu
Emerging technologies generate data sets of increased size and complexity that require new or updated statistical inferential methods and scalable, reproducible software. These data sets often involve measurements of a continuous underlying process, and benefit from a functional data perspective. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves, and clustering. The idea is for the reader to be able to immediately reproduce the results in the book, implement these methods, and potentially design new methods and software that may be inspired by these approaches. Features: Functional regression models receive a modern treatment that allows extensions to many practical scenarios and development of state-of-the-art software. The connection between functional regression, penalized smoothing, and mixed effects models is used as the cornerstone for inference. Multilevel, longitudinal, and structured functional data are discussed with emphasis on emerging functional data structures. Methods for clustering functional data before and after smoothing are discussed. Multiple new functional data sets with dense and sparse sampling designs from various application areas are presented, including the NHANES linked accelerometry and mortality data, COVID-19 mortality data, CD4 counts data, and the CONTENT child growth study. Step-by-step software implementations are included, along with a supplementary website (www.FunctionalDataAnalysis.com) featuring software, data, and tutorials. More than 100 plots for visualization of functional data are presented. Functional Data Analysis with R is primarily aimed at undergraduate, master's, and PhD students, as well as data scientists and researchers working on functional data analysis. The book can be read at different levels and combines state-of-the-art software, methods, and inference. It can be used for self-learning, teaching, and research, and will particularly appeal to anyone who is interested in practical methods for hands-on, problem-forward functional data analysis. The reader should have some basic coding experience, but expertise in R is not required.
Author |
: Michael J. Daniels |
Publisher |
: CRC Press |
Total Pages |
: 263 |
Release |
: 2023-08-23 |
ISBN-10 |
: 9781000927719 |
ISBN-13 |
: 1000927717 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Bayesian Nonparametrics for Causal Inference and Missing Data by : Michael J. Daniels
Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features • Thorough discussion of both BNP and its interplay with causal inference and missing data • How to use BNP and g-computation for causal inference and non-ignorable missingness • How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions • Detailed case studies illustrating the application of BNP methods to causal inference and missing data • R code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.
Author |
: John Wright |
Publisher |
: Cambridge University Press |
Total Pages |
: 718 |
Release |
: 2022-01-13 |
ISBN-10 |
: 9781108805551 |
ISBN-13 |
: 1108805558 |
Rating |
: 4/5 (51 Downloads) |
Synopsis High-Dimensional Data Analysis with Low-Dimensional Models by : John Wright
Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
Author |
: Mohsen Pourahmadi |
Publisher |
: John Wiley & Sons |
Total Pages |
: 204 |
Release |
: 2013-05-28 |
ISBN-10 |
: 9781118573662 |
ISBN-13 |
: 1118573668 |
Rating |
: 4/5 (62 Downloads) |
Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Author |
: Arnoldo Frigessi |
Publisher |
: Springer |
Total Pages |
: 313 |
Release |
: 2016-02-16 |
ISBN-10 |
: 9783319270999 |
ISBN-13 |
: 3319270990 |
Rating |
: 4/5 (99 Downloads) |
Synopsis Statistical Analysis for High-Dimensional Data by : Arnoldo Frigessi
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
Author |
: Roman Vershynin |
Publisher |
: Cambridge University Press |
Total Pages |
: 299 |
Release |
: 2018-09-27 |
ISBN-10 |
: 9781108415194 |
ISBN-13 |
: 1108415199 |
Rating |
: 4/5 (94 Downloads) |
Synopsis High-Dimensional Probability by : Roman Vershynin
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.