Solution Of Superlarge Problems In Computational Mechanics
Download Solution Of Superlarge Problems In Computational Mechanics full books in PDF, epub, and Kindle. Read online free Solution Of Superlarge Problems In Computational Mechanics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: James H. Kane |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 300 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461305354 |
ISBN-13 |
: 1461305357 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Solution of Superlarge Problems in Computational Mechanics by : James H. Kane
There is a need to solve problems in solid and fluid mechanics that currently exceed the resources of current and foreseeable supercomputers. The issue revolves around the number of degrees of freedom of simultaneous equations that one needs to accurately describe the problem, and the computer storage and speed limitations which prohibit such solutions. The goals of tHis symposium were to explore some of the latest work being done in both industry and academia to solve such extremely large problems, and to provide a forum for the discussion and prognostication of necessary future direc tions of both man and machine. As evidenced in this proceedings we believe these goals were met. Contained in this volume are discussions of: iterative solvers, and their application to a variety of problems, e.g. structures, fluid dynamics, and structural acoustics; iterative dynamic substructuring and its use in structural acoustics; the use of the boundary element method both alone and in conjunction with the finite element method; the application of finite difference methods to problems of incompressible, turbulent flow; and algorithms amenable to concurrent computations and their applications. Furthermore, discussions of existing computational shortcomings from the big picture point of view are presented that include recommendations for future work.
Author |
: James H Kane |
Publisher |
: |
Total Pages |
: 316 |
Release |
: 1990-02-01 |
ISBN-10 |
: 1461305365 |
ISBN-13 |
: 9781461305361 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Solution of Superlarge Problems in Computational Mechanics by : James H Kane
Author |
: Hojjat Adeli |
Publisher |
: CRC Press |
Total Pages |
: 390 |
Release |
: 2020-08-26 |
ISBN-10 |
: 9781000147889 |
ISBN-13 |
: 1000147886 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Parallel Processing in Computational Mechanics by : Hojjat Adeli
Introduces mechanical engineers to high-performance computing using the new generation of computers with vector and parallel processing capabilities that allow the solution to problems beyond the ken of traditional computers. The chapters present an introduction and overview, explain several methodo
Author |
: Farid Amirouche |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 692 |
Release |
: 2007-05-24 |
ISBN-10 |
: 9780817644062 |
ISBN-13 |
: 0817644067 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Fundamentals of Multibody Dynamics by : Farid Amirouche
This textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.
Author |
: |
Publisher |
: |
Total Pages |
: 456 |
Release |
: 1995 |
ISBN-10 |
: MINN:30000006324606 |
ISBN-13 |
: |
Rating |
: 4/5 (06 Downloads) |
Synopsis Scientific and Technical Aerospace Reports by :
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Author |
: James H. Kane |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 516 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642510274 |
ISBN-13 |
: 3642510272 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Advances in Boundary Element Techniques by : James H. Kane
The editors have published a select group of full length papers on boundary element analysis (BEA) photographed from camera ready manuscripts. The articles have been prepared by some of the most distinguished and prolific individuals in this field. More than half of these articles have been submitted by authors that participated in an International Forum on Boundary Element Methods, in Melbourne Australia, in the Summer of 1991. However, this volume is not a conference proceedings, as these authors have expanded their accounts to chapter length, and/or have tailored their expositions more toward the style employed in archival journal publications. The authors that did not participate in the International Forum have also adhered to the above mentioned philosophy. This work contains a definitive representation of the significant capabilities and applications currently available or under investigation that fall under the general category of advanced boundary element analysis. With treatments of mechanical, thermal, fluid, and electromagnetic phenomena, this book should thus be of value to graduate students, practitioners, and researchers in engineering, mathematics, and the physical sciences wishing to obtain a broader perspective or remain current in these important areas of computational simulation.
Author |
: Jan S. Hesthaven |
Publisher |
: Cambridge University Press |
Total Pages |
: 4 |
Release |
: 2007-01-11 |
ISBN-10 |
: 9781139459525 |
ISBN-13 |
: 113945952X |
Rating |
: 4/5 (25 Downloads) |
Synopsis Spectral Methods for Time-Dependent Problems by : Jan S. Hesthaven
Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.
Author |
: John P. Boyd |
Publisher |
: Courier Corporation |
Total Pages |
: 690 |
Release |
: 2013-06-05 |
ISBN-10 |
: 9780486141923 |
ISBN-13 |
: 0486141926 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Chebyshev and Fourier Spectral Methods by : John P. Boyd
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Author |
: |
Publisher |
: |
Total Pages |
: 1084 |
Release |
: 1989 |
ISBN-10 |
: UFL:31262045753034 |
ISBN-13 |
: |
Rating |
: 4/5 (34 Downloads) |
Synopsis Recent Advances in Multidisciplinary Analysis and Optimization by :
Author |
: John E Ffowcs Williams |
Publisher |
: World Scientific |
Total Pages |
: 1028 |
Release |
: 1994-10-25 |
ISBN-10 |
: 9789814551724 |
ISBN-13 |
: 9814551724 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Theoretical And Computational Acoustics - Proceedings Of The International Conference (In 2 Volumes) by : John E Ffowcs Williams
This conference provided a forum for active researchers to discuss the state of the art in theoretical and computational acoustics. Topics covered structural acoustics, scattering, 3-dimensional propagational problems, fluid/elastic interfaces, wavelets and their impact on acoustics, computational methods and supercomputing.