Smoothing Of Multivariate Data
Download Smoothing Of Multivariate Data full books in PDF, epub, and Kindle. Read online free Smoothing Of Multivariate Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jussi Sakari Klemelä |
Publisher |
: John Wiley & Sons |
Total Pages |
: 641 |
Release |
: 2009-09-04 |
ISBN-10 |
: 9780470425664 |
ISBN-13 |
: 0470425660 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Smoothing of Multivariate Data by : Jussi Sakari Klemelä
An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.
Author |
: José E. Chacón |
Publisher |
: CRC Press |
Total Pages |
: 249 |
Release |
: 2018-05-08 |
ISBN-10 |
: 9780429939143 |
ISBN-13 |
: 0429939140 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón
Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.
Author |
: M.P. Wand |
Publisher |
: CRC Press |
Total Pages |
: 227 |
Release |
: 1994-12-01 |
ISBN-10 |
: 9781482216127 |
ISBN-13 |
: 1482216124 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Kernel Smoothing by : M.P. Wand
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita
Author |
: Michael G. Schimek |
Publisher |
: John Wiley & Sons |
Total Pages |
: 682 |
Release |
: 2013-05-29 |
ISBN-10 |
: 9781118763308 |
ISBN-13 |
: 1118763300 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Smoothing and Regression by : Michael G. Schimek
A comprehensive introduction to a wide variety of univariate and multivariate smoothing techniques for regression Smoothing and Regression: Approaches, Computation, and Application bridges the many gaps that exist among competing univariate and multivariate smoothing techniques. It introduces, describes, and in some cases compares a large number of the latest and most advanced techniques for regression modeling. Unlike many other volumes on this topic, which are highly technical and specialized, this book discusses all methods in light of both computational efficiency and their applicability for real data analysis. Using examples of applications from the biosciences, environmental sciences, engineering, and economics, as well as medical research and marketing, this volume addresses the theory, computation, and application of each approach. A number of the techniques discussed, such as smoothing under shape restrictions or of dependent data, are presented for the first time in book form. Special features of this book include: * Comprehensive coverage of smoothing and regression with software hints and applications from a wide variety of disciplines * A unified, easy-to-follow format * Contributions from more than 25 leading researchers from around the world * More than 150 illustrations also covering new graphical techniques important for exploratory data analysis and visualization of high-dimensional problems * Extensive end-of-chapter references For professionals and aspiring professionals in statistics, applied mathematics, computer science, and econometrics, as well as for researchers in the applied and social sciences, Smoothing and Regression is a unique and important new resource destined to become one the most frequently consulted references in the field.
Author |
: Jussi Sakari Klemelä |
Publisher |
: John Wiley & Sons |
Total Pages |
: 317 |
Release |
: 2014-05-05 |
ISBN-10 |
: 9781118593509 |
ISBN-13 |
: 1118593502 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Multivariate Nonparametric Regression and Visualization by : Jussi Sakari Klemelä
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.
Author |
: Sucharita Ghosh |
Publisher |
: John Wiley & Sons |
Total Pages |
: 272 |
Release |
: 2018-01-09 |
ISBN-10 |
: 9781118456057 |
ISBN-13 |
: 111845605X |
Rating |
: 4/5 (57 Downloads) |
Synopsis Kernel Smoothing by : Sucharita Ghosh
Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of contexts, considering independent and correlated data e.g. with short-memory and long-memory correlations, as well as non-Gaussian data that are transformations of latent Gaussian processes. These types of data occur in many fields of research, e.g. the natural and the environmental sciences, and others. Nonparametric density estimation, nonparametric and semiparametric regression, trend and surface estimation in particular for time series and spatial data and other topics such as rapid change points, robustness etc. are introduced alongside a study of their theoretical properties and optimality issues, such as consistency and bandwidth selection. Addressing a variety of topics, Kernel Smoothing: Principles, Methods and Applications offers a user-friendly presentation of the mathematical content so that the reader can directly implement the formulas using any appropriate software. The overall aim of the book is to describe the methods and their theoretical backgrounds, while maintaining an analytically simple approach and including motivating examples—making it extremely useful in many sciences such as geophysics, climate research, forestry, ecology, and other natural and life sciences, as well as in finance, sociology, and engineering. A simple and analytical description of kernel smoothing methods in various contexts Presents the basics as well as new developments Includes simulated and real data examples Kernel Smoothing: Principles, Methods and Applications is a textbook for senior undergraduate and graduate students in statistics, as well as a reference book for applied statisticians and advanced researchers.
Author |
: Wolfgang Härdle |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 267 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461244325 |
ISBN-13 |
: 1461244323 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Smoothing Techniques by : Wolfgang Härdle
The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
Author |
: Qi Li |
Publisher |
: Princeton University Press |
Total Pages |
: 769 |
Release |
: 2011-10-09 |
ISBN-10 |
: 9781400841066 |
ISBN-13 |
: 1400841062 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Nonparametric Econometrics by : Qi Li
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Author |
: William G. Jacoby |
Publisher |
: SAGE |
Total Pages |
: 116 |
Release |
: 1998-02-06 |
ISBN-10 |
: 0761908994 |
ISBN-13 |
: 9780761908999 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Statistical Graphics for Visualizing Multivariate Data by : William G. Jacoby
Jacoby explores a variety of graphical displays that are useful for visualising multivariate data, and introduces the concept of a 'data space'. Several methods for coding information directly into the plotting symbols are explained.
Author |
: Abdulkader Aljandali |
Publisher |
: Springer |
Total Pages |
: 185 |
Release |
: 2017-07-06 |
ISBN-10 |
: 9783319564814 |
ISBN-13 |
: 3319564811 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Multivariate Methods and Forecasting with IBM® SPSS® Statistics by : Abdulkader Aljandali
This is the second of a two-part guide to quantitative analysis using the IBM SPSS Statistics software package; this volume focuses on multivariate statistical methods and advanced forecasting techniques. More often than not, regression models involve more than one independent variable. For example, forecasting methods are commonly applied to aggregates such as inflation rates, unemployment, exchange rates, etc., that have complex relationships with determining variables. This book introduces multivariate regression models and provides examples to help understand theory underpinning the model. The book presents the fundamentals of multivariate regression and then moves on to examine several related techniques that have application in business-orientated fields such as logistic and multinomial regression. Forecasting tools such as the Box-Jenkins approach to time series modeling are introduced, as well as exponential smoothing and naïve techniques. This part also covers hot topics such as Factor Analysis, Discriminant Analysis and Multidimensional Scaling (MDS).