Smooth Homotopy Of Infinite Dimensional Cinfty Manifolds
Download Smooth Homotopy Of Infinite Dimensional Cinfty Manifolds full books in PDF, epub, and Kindle. Read online free Smooth Homotopy Of Infinite Dimensional Cinfty Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hiroshi Kihara |
Publisher |
: American Mathematical Society |
Total Pages |
: 144 |
Release |
: 2023-09-27 |
ISBN-10 |
: 9781470465421 |
ISBN-13 |
: 1470465426 |
Rating |
: 4/5 (21 Downloads) |
Synopsis Smooth Homotopy of Infinite-Dimensional $C^{infty }$-Manifolds by : Hiroshi Kihara
View the abstract.
Author |
: John M. Lee |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 646 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9780387217529 |
ISBN-13 |
: 0387217525 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Introduction to Smooth Manifolds by : John M. Lee
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Author |
: Loring W. Tu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 426 |
Release |
: 2010-10-05 |
ISBN-10 |
: 9781441974006 |
ISBN-13 |
: 1441974008 |
Rating |
: 4/5 (06 Downloads) |
Synopsis An Introduction to Manifolds by : Loring W. Tu
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Author |
: Ana Cannas da Silva |
Publisher |
: Springer |
Total Pages |
: 240 |
Release |
: 2004-10-27 |
ISBN-10 |
: 9783540453307 |
ISBN-13 |
: 354045330X |
Rating |
: 4/5 (07 Downloads) |
Synopsis Lectures on Symplectic Geometry by : Ana Cannas da Silva
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author |
: Alexander A. Kirillov |
Publisher |
: Cambridge University Press |
Total Pages |
: 237 |
Release |
: 2008-07-31 |
ISBN-10 |
: 9780521889698 |
ISBN-13 |
: 0521889693 |
Rating |
: 4/5 (98 Downloads) |
Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author |
: Katsuro Sakai |
Publisher |
: Springer Nature |
Total Pages |
: 619 |
Release |
: 2020-11-21 |
ISBN-10 |
: 9789811575754 |
ISBN-13 |
: 9811575754 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Topology of Infinite-Dimensional Manifolds by : Katsuro Sakai
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk’s conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial ∞-manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial ∞-manifold and the Hauptvermutung for them is true.
Author |
: Jean-Pierre Serre |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 139 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783662042038 |
ISBN-13 |
: 3662042037 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Local Algebra by : Jean-Pierre Serre
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.
Author |
: Dominic D. Joyce |
Publisher |
: |
Total Pages |
: 139 |
Release |
: 2019 |
ISBN-10 |
: 1470453363 |
ISBN-13 |
: 9781470453367 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Algebraic Geometry Over C[infinity]-rings by : Dominic D. Joyce
Author |
: Steve Zelditch |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 410 |
Release |
: 2017-12-12 |
ISBN-10 |
: 9781470410377 |
ISBN-13 |
: 1470410370 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Eigenfunctions of the Laplacian on a Riemannian Manifold by : Steve Zelditch
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Author |
: Joel W. Robbin |
Publisher |
: Springer Nature |
Total Pages |
: 426 |
Release |
: 2022-01-12 |
ISBN-10 |
: 9783662643402 |
ISBN-13 |
: 3662643405 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Introduction to Differential Geometry by : Joel W. Robbin
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.