Singularities I

Singularities I
Author :
Publisher : American Mathematical Soc.
Total Pages : 370
Release :
ISBN-10 : 9780821844588
ISBN-13 : 082184458X
Rating : 4/5 (88 Downloads)

Synopsis Singularities I by : Jean-Paul Brasselet

Handbook of Geometry and Topology of Singularities I

Handbook of Geometry and Topology of Singularities I
Author :
Publisher : Springer Nature
Total Pages : 616
Release :
ISBN-10 : 9783030530617
ISBN-13 : 3030530612
Rating : 4/5 (17 Downloads)

Synopsis Handbook of Geometry and Topology of Singularities I by : José Luis Cisneros Molina

This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Introduction to Singularities

Introduction to Singularities
Author :
Publisher : Springer
Total Pages : 227
Release :
ISBN-10 : 9784431550815
ISBN-13 : 443155081X
Rating : 4/5 (15 Downloads)

Synopsis Introduction to Singularities by : Shihoko Ishii

This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.

Introduction to Singularities and Deformations

Introduction to Singularities and Deformations
Author :
Publisher : Springer Science & Business Media
Total Pages : 482
Release :
ISBN-10 : 9783540284192
ISBN-13 : 3540284192
Rating : 4/5 (92 Downloads)

Synopsis Introduction to Singularities and Deformations by : Gert-Martin Greuel

Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.

Singularities and Topology of Hypersurfaces

Singularities and Topology of Hypersurfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 277
Release :
ISBN-10 : 9781461244042
ISBN-13 : 1461244048
Rating : 4/5 (42 Downloads)

Synopsis Singularities and Topology of Hypersurfaces by : Alexandru Dimca

The Singularities

The Singularities
Author :
Publisher : Swift Press
Total Pages : 331
Release :
ISBN-10 : 9781800753372
ISBN-13 : 1800753373
Rating : 4/5 (72 Downloads)

Synopsis The Singularities by : John Banville

'This novel is essence of Banville ... a career summation' Daily Telegraph Felix Mordaunt, recently released from prison, steps from a flashy red sports car onto the estate of his youth. But there is a new family living in the drafty old house: descendants of the late, world-famous scientist Adam Godley. Felix must now vie with the idiosyncratic Godley family, with their harried housekeeper who becomes his landlady, with the recently commissioned biographer of Godley Sr., and with a wealthy and beautiful woman from his past who comes bearing an unusual request...

Singularities of integrals

Singularities of integrals
Author :
Publisher : Springer Science & Business Media
Total Pages : 218
Release :
ISBN-10 : 9780857296030
ISBN-13 : 0857296035
Rating : 4/5 (30 Downloads)

Synopsis Singularities of integrals by : Frédéric Pham

Bringing together two fundamental texts from Frédéric Pham’s research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom’s isotopy theorems, Frédéric Pham’s foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a ‘must-have’ introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frédéric Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions.

Singularities of the Minimal Model Program

Singularities of the Minimal Model Program
Author :
Publisher : Cambridge University Press
Total Pages : 381
Release :
ISBN-10 : 9781107035348
ISBN-13 : 1107035341
Rating : 4/5 (48 Downloads)

Synopsis Singularities of the Minimal Model Program by : János Kollár

An authoritative reference and the first comprehensive treatment of the singularities of the minimal model program.

Singularities Physics Engineering Secohb

Singularities Physics Engineering Secohb
Author :
Publisher : IOP Publishing Limited
Total Pages : 0
Release :
ISBN-10 : 0750349808
ISBN-13 : 9780750349802
Rating : 4/5 (08 Downloads)

Synopsis Singularities Physics Engineering Secohb by : SENTHILKUMARAN

The book gives a thorough introduction to singularities and their development. It explains in detail important topics such as the types of singularities, their properties, detection and application, and emerging research trends.

Sheaves in Topology

Sheaves in Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 253
Release :
ISBN-10 : 9783642188688
ISBN-13 : 3642188680
Rating : 4/5 (88 Downloads)

Synopsis Sheaves in Topology by : Alexandru Dimca

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.