Singular Integrals In Boundary Element Methods
Download Singular Integrals In Boundary Element Methods full books in PDF, epub, and Kindle. Read online free Singular Integrals In Boundary Element Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Vladimír Sládek |
Publisher |
: Computational Mechanics |
Total Pages |
: 456 |
Release |
: 1998 |
ISBN-10 |
: STANFORD:36105023115822 |
ISBN-13 |
: |
Rating |
: 4/5 (22 Downloads) |
Synopsis Singular Integrals in Boundary Element Methods by : Vladimír Sládek
A text in singular integrals in boundary element methods. Topics covered include: treatment in crack problems; regularization of boundary integral equations by the derivative transfer method; regularization and evaluation of singular domain integrals in boundary element methods and others.
Author |
: IABEM (Organization). Symposium |
Publisher |
: Springer |
Total Pages |
: 546 |
Release |
: 1991 |
ISBN-10 |
: UOM:39015024933312 |
ISBN-13 |
: |
Rating |
: 4/5 (12 Downloads) |
Synopsis Boundary Integral Methods by : IABEM (Organization). Symposium
Author |
: Gernot Beer |
Publisher |
: Springer Nature |
Total Pages |
: 342 |
Release |
: 2019-09-21 |
ISBN-10 |
: 9783030233396 |
ISBN-13 |
: 3030233391 |
Rating |
: 4/5 (96 Downloads) |
Synopsis The Isogeometric Boundary Element Method by : Gernot Beer
This book discusses the introduction of isogeometric technology to the boundary element method (BEM) in order to establish an improved link between simulation and computer aided design (CAD) that does not require mesh generation. In the isogeometric BEM, non-uniform rational B-splines replace the Lagrange polynomials used in conventional BEM. This may seem a trivial exercise, but if implemented rigorously, it has profound implications for the programming, resulting in software that is extremely user friendly and efficient. The BEM is ideally suited for linking with CAD, as both rely on the definition of objects by boundary representation. The book shows how the isogeometric philosophy can be implemented and how its benefits can be maximised with a minimum of user effort. Using several examples, ranging from potential problems to elasticity, it demonstrates that the isogeometric approach results in a drastic reduction in the number of unknowns and an increase in the quality of the results. In some cases even exact solutions without refinement are possible. The book also presents a number of practical applications, demonstrating that the development is not only of academic interest. It then elegantly addresses heterogeneous and non-linear problems using isogeometric concepts, and tests them on several examples, including a severely non-linear problem in viscous flow. The book makes a significant contribution towards a seamless integration of CAD and simulation, which eliminates the need for tedious mesh generation and provides high-quality results with minimum user intervention and computing.
Author |
: John P. Wolf |
Publisher |
: John Wiley & Sons |
Total Pages |
: 398 |
Release |
: 2003-03-14 |
ISBN-10 |
: 0471486825 |
ISBN-13 |
: 9780471486824 |
Rating |
: 4/5 (25 Downloads) |
Synopsis The Scaled Boundary Finite Element Method by : John P. Wolf
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
Author |
: Stefan A. Sauter |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 575 |
Release |
: 2010-11-01 |
ISBN-10 |
: 9783540680932 |
ISBN-13 |
: 3540680934 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Boundary Element Methods by : Stefan A. Sauter
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.
Author |
: John T. Katsikadelis |
Publisher |
: Elsevier |
Total Pages |
: 351 |
Release |
: 2002-05-28 |
ISBN-10 |
: 9780080528243 |
ISBN-13 |
: 0080528244 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Boundary Elements: Theory and Applications by : John T. Katsikadelis
The author's ambition for this publication was to make BEM accessible to the student as well as to the professional engineer. For this reason, his maintask was to organize and present the material in such a way so that the book becomes "user-friendly" and easy to comprehend, taking into account only the mathematics and mechanics to which students have been exposed during their undergraduate studies. This effort led to an innovative, in many aspects, way of presentingBEM, including the derivation of fundamental solutions, the integral representation of the solutions and the boundary integral equations for various governing differentialequations in a simple way minimizing a recourse to mathematics with which the student is not familiar. The indicial and tensorial notations, though they facilitate the author's work and allow to borrow ready to use expressions from the literature, have been avoided in the present book. Nevertheless, all the necessary preliminary mathematical concepts have been included in order to make the book complete and self-sufficient.Throughout the book, every concept is followed by example problems, which have been worked out in detail and with all the necessary clarifications. Furthermore, each chapter of the book is enriched with problems-to-solve. These problems serve a threefold purpose. Some of them are simple and aim at applying and better understanding the presented theory, some others are more difficult and aim at extending the theory to special cases requiring a deeper understanding of the concepts, and others are small projects which serve the purpose of familiarizing the student with BEM programming and the programs contained in the CD-ROM.The latter class of problems is very important as it helps students to comprehend the usefulness and effectiveness of the method by solving real-life engineering problems. Through these problems students realize that the BEM is a powerful computational tool and not an alternative theoretical approach for dealing with physical problems. My experience in teaching BEM shows that this is the students' most favorite type of problems. They are delighted to solve them, since they integrate their knowledge and make them feel confident in mastering BEM.The CD-ROM which accompanies the book contains the source codes of all the computer programs developed in the book, so that the student or the engineer can use them for the solution of a broad class of problems. Among them are general potential problems, problems of torsion, thermal conductivity,deflection of membranes and plates, flow of incompressible fluids, flow through porous media, in isotropic or anisotropic, homogeneous or composite bodies, as well as plane elastostatic problems in simply or multiply connected domains. As one can readily find out from the variety of the applications, the book is useful for engineers of all disciplines. The author is hopeful that the present book will introduce the reader to BEM in an easy, smooth and pleasant way and also contribute to itsdissemination as a modern robust computational tool for solving engineering problems.
Author |
: John T. Katsikadelis |
Publisher |
: Academic Press |
Total Pages |
: 466 |
Release |
: 2016-10-10 |
ISBN-10 |
: 9780128020104 |
ISBN-13 |
: 0128020105 |
Rating |
: 4/5 (04 Downloads) |
Synopsis The Boundary Element Method for Engineers and Scientists by : John T. Katsikadelis
The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website. - Offers an accessible guide to BEM principles and numerical implementation, with worked examples and detailed discussion of practical applications - This second edition features three new chapters, including coverage of the dual reciprocity method (DRM) and analog equation method (AEM), with their application to complicated problems, including time dependent and non-linear problems, as well as problems described by fractional differential equations - Companion website includes source code of all computer programs developed in the book for the solution of a broad range of real-life engineering problems
Author |
: L. C. Wrobel |
Publisher |
: John Wiley & Sons |
Total Pages |
: 480 |
Release |
: 2002-04-22 |
ISBN-10 |
: 0471720399 |
ISBN-13 |
: 9780471720393 |
Rating |
: 4/5 (99 Downloads) |
Synopsis The Boundary Element Method, Volume 1 by : L. C. Wrobel
The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.
Author |
: M. H. Aliabadi |
Publisher |
: John Wiley & Sons |
Total Pages |
: 614 |
Release |
: 2002-04-29 |
ISBN-10 |
: 0470842989 |
ISBN-13 |
: 9780470842980 |
Rating |
: 4/5 (89 Downloads) |
Synopsis The Boundary Element Method, Volume 2 by : M. H. Aliabadi
The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.
Author |
: Masataka Tanaka |
Publisher |
: Elsevier |
Total Pages |
: 571 |
Release |
: 2017-05-22 |
ISBN-10 |
: 9781483286969 |
ISBN-13 |
: 1483286967 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Boundary Element Methods in Applied Mechanics by : Masataka Tanaka
This Proceedings features a broad range of computational mechanics papers on both solid and fluid mechanics as well as electromagnetics, acoustics, heat transfer and other interdisciplinary problems. Topics covered include theoretical developments, numerical analysis, intelligent and adaptive solution strategies and practical applications.