Simulation of Material Processing: Theory, Methods and Application

Simulation of Material Processing: Theory, Methods and Application
Author :
Publisher : CRC Press
Total Pages : 1170
Release :
ISBN-10 : 9026518226
ISBN-13 : 9789026518225
Rating : 4/5 (26 Downloads)

Synopsis Simulation of Material Processing: Theory, Methods and Application by : Ken-ichiro Mori

This volume contains about 180 papers including seven keynotes presented at the 7th NUMIFORM Conference. It reflects the state-of-the-art of simulation of industrial forming processes such as rolling, forging, sheet metal forming, injection moulding and casting.

Continuum Scale Simulation of Engineering Materials

Continuum Scale Simulation of Engineering Materials
Author :
Publisher : John Wiley & Sons
Total Pages : 885
Release :
ISBN-10 : 9783527604210
ISBN-13 : 3527604219
Rating : 4/5 (10 Downloads)

Synopsis Continuum Scale Simulation of Engineering Materials by : Dierk Raabe

This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Computational Finite Element Methods in Nanotechnology

Computational Finite Element Methods in Nanotechnology
Author :
Publisher : CRC Press
Total Pages : 640
Release :
ISBN-10 : 9781439893265
ISBN-13 : 1439893268
Rating : 4/5 (65 Downloads)

Synopsis Computational Finite Element Methods in Nanotechnology by : Sarhan M. Musa

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.

Mathematical and Physical Simulation of the Properties of Hot Rolled Products

Mathematical and Physical Simulation of the Properties of Hot Rolled Products
Author :
Publisher : Elsevier
Total Pages : 377
Release :
ISBN-10 : 9780080525686
ISBN-13 : 0080525687
Rating : 4/5 (86 Downloads)

Synopsis Mathematical and Physical Simulation of the Properties of Hot Rolled Products by : Maciej Pietrzyk

The objective of this publication is to comprehensively discuss the possibilities of producing steels with pre-determined attributes, demanded by the customer to fit exacting specifications. The information presented in the book has been designed to indicate the reasons for the expenses and to aid in the process of overcoming the difficulties and reducing the costs. In nine detailed chapters, the authors cover topics including: • steel as a major contributor to the economic wealth of a country in terms of its capabilities and production • current concerns of major steel producers • phenomena contributing to the quality of the product • information concerning the boundary conditions of the rolling process and initial conditions, put to use by mathematical models • the solid state incremental approach and flow formulation • parameters and variables - most of which make use of the exponential nature of phenomena that are activated by thermal energy • the application of three dimensional analysis to shape rolling • the evaluation of parameters by a form of inverse analysis to the flat rolling process • knowledge based modeling, using artificial intelligence, expert systems and neural networks They conclude that when either mathematical or physical modeling of the rolling process is considered and the aim is to satisfy the demands for customers, it is possible to produce what the customer wants, exactly.

Advances in Mechanical, Materials and Manufacturing Engineering

Advances in Mechanical, Materials and Manufacturing Engineering
Author :
Publisher : Trans Tech Publications Ltd
Total Pages : 1095
Release :
ISBN-10 : 9783038266624
ISBN-13 : 3038266620
Rating : 4/5 (24 Downloads)

Synopsis Advances in Mechanical, Materials and Manufacturing Engineering by : Amir Khalid

Selected, peer reviewed papers from the 5th International Conference on Mechanical and Manufacturing Engineering 2014 (ICME 2014), October 29-30, 2014, Bandung, Indonesia

Computational Contact Mechanics

Computational Contact Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 9783642315312
ISBN-13 : 3642315313
Rating : 4/5 (12 Downloads)

Synopsis Computational Contact Mechanics by : Alexander Konyukhov

This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.

Handbook of Materials Modeling

Handbook of Materials Modeling
Author :
Publisher : Springer Science & Business Media
Total Pages : 2903
Release :
ISBN-10 : 9781402032868
ISBN-13 : 1402032862
Rating : 4/5 (68 Downloads)

Synopsis Handbook of Materials Modeling by : Sidney Yip

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Metal Forming Analysis

Metal Forming Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 396
Release :
ISBN-10 : 0521642671
ISBN-13 : 9780521642675
Rating : 4/5 (71 Downloads)

Synopsis Metal Forming Analysis by : R. H. Wagoner

This 2001 book describes the most important numerical techniques for simulating metal forming operations.

III European Conference on Computational Mechanics

III European Conference on Computational Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 861
Release :
ISBN-10 : 9781402053702
ISBN-13 : 1402053703
Rating : 4/5 (02 Downloads)

Synopsis III European Conference on Computational Mechanics by : C. A. Mota Soares

III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field.