Signal Processing And Machine Learning With Applications
Download Signal Processing And Machine Learning With Applications full books in PDF, epub, and Kindle. Read online free Signal Processing And Machine Learning With Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Sudeep Tanwar |
Publisher |
: CRC Press |
Total Pages |
: 488 |
Release |
: 2021-12-10 |
ISBN-10 |
: 9781000487817 |
ISBN-13 |
: 1000487814 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Machine Learning in Signal Processing by : Sudeep Tanwar
Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Author |
: Michael M. Richter |
Publisher |
: Springer |
Total Pages |
: 0 |
Release |
: 2022-10-01 |
ISBN-10 |
: 3319453718 |
ISBN-13 |
: 9783319453712 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Signal Processing and Machine Learning with Applications by : Michael M. Richter
Signal processing captures, interprets, describes and manipulates physical phenomena. Mathematics, statistics, probability, and stochastic processes are among the signal processing languages we use to interpret real-world phenomena, model them, and extract useful information. This book presents different kinds of signals humans use and applies them for human machine interaction to communicate. Signal Processing and Machine Learning with Applications presents methods that are used to perform various Machine Learning and Artificial Intelligence tasks in conjunction with their applications. It is organized in three parts: Realms of Signal Processing; Machine Learning and Recognition; and Advanced Applications and Artificial Intelligence. The comprehensive coverage is accompanied by numerous examples, questions with solutions, with historical notes. The book is intended for advanced undergraduate and postgraduate students, researchers and practitioners who are engaged with signal processing, machine learning and the applications.
Author |
: Max A. Little |
Publisher |
: Oxford University Press, USA |
Total Pages |
: 378 |
Release |
: 2019 |
ISBN-10 |
: 9780198714934 |
ISBN-13 |
: 0198714939 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Machine Learning for Signal Processing by : Max A. Little
Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Author |
: Ali N. Akansu |
Publisher |
: John Wiley & Sons |
Total Pages |
: 312 |
Release |
: 2016-04-21 |
ISBN-10 |
: 9781118745632 |
ISBN-13 |
: 1118745639 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Financial Signal Processing and Machine Learning by : Ali N. Akansu
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Author |
: Ervin Sejdic |
Publisher |
: CRC Press |
Total Pages |
: 1235 |
Release |
: 2018-07-04 |
ISBN-10 |
: 9781351061216 |
ISBN-13 |
: 1351061216 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Signal Processing and Machine Learning for Biomedical Big Data by : Ervin Sejdic
Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.
Author |
: Li Deng |
Publisher |
: |
Total Pages |
: 212 |
Release |
: 2014 |
ISBN-10 |
: 1601988141 |
ISBN-13 |
: 9781601988140 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Deep Learning by : Li Deng
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Author |
: Manel Martínez-Ramón |
Publisher |
: Artech House |
Total Pages |
: 436 |
Release |
: 2021-04-30 |
ISBN-10 |
: 9781630817763 |
ISBN-13 |
: 1630817767 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Machine Learning Applications in Electromagnetics and Antenna Array Processing by : Manel Martínez-Ramón
This practical resource provides an overview of machine learning (ML) approaches as applied to electromagnetics and antenna array processing. Detailed coverage of the main trends in ML, including uniform and random array processing (beamforming and detection of angle of arrival), antenna optimization, wave propagation, remote sensing, radar, and other aspects of electromagnetic design are explored. An introduction to machine learning principles and the most common machine learning architectures and algorithms used today in electromagnetics and other applications is presented, including basic neural networks, gaussian processes, support vector machines, kernel methods, deep learning, convolutional neural networks, and generative adversarial networks. Applications in electromagnetics and antenna array processing that are solved using machine learning are discussed, including antennas, remote sensing, and target classification.
Author |
: Toshihisa Tanaka |
Publisher |
: Institution of Engineering and Technology |
Total Pages |
: 355 |
Release |
: 2018-09-13 |
ISBN-10 |
: 9781785613982 |
ISBN-13 |
: 1785613987 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Signal Processing and Machine Learning for Brain-Machine Interfaces by : Toshihisa Tanaka
Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.
Author |
: Petar Djuric |
Publisher |
: Academic Press |
Total Pages |
: 868 |
Release |
: 2018-07-04 |
ISBN-10 |
: 9780128136782 |
ISBN-13 |
: 0128136782 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Cooperative and Graph Signal Processing by : Petar Djuric
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Author |
: Nilanjan Dey |
Publisher |
: Academic Press |
Total Pages |
: 348 |
Release |
: 2018-11-30 |
ISBN-10 |
: 9780128160879 |
ISBN-13 |
: 012816087X |
Rating |
: 4/5 (79 Downloads) |
Synopsis Machine Learning in Bio-Signal Analysis and Diagnostic Imaging by : Nilanjan Dey
Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains