Shock Capturing And High Order Methods For Hyperbolic Conservation Laws
Download Shock Capturing And High Order Methods For Hyperbolic Conservation Laws full books in PDF, epub, and Kindle. Read online free Shock Capturing And High Order Methods For Hyperbolic Conservation Laws ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Jan Glaubitz |
Publisher |
: Logos Verlag Berlin GmbH |
Total Pages |
: 270 |
Release |
: 2020-03-20 |
ISBN-10 |
: 9783832550844 |
ISBN-13 |
: 3832550844 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Shock capturing and high-order methods for hyperbolic conservation laws by : Jan Glaubitz
This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.
Author |
: Philippe G. LeFloch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1010 |
Release |
: 2002-07-01 |
ISBN-10 |
: 3764366877 |
ISBN-13 |
: 9783764366872 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Hyperbolic Systems of Conservation Laws by : Philippe G. LeFloch
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Author |
: LEVEQUE |
Publisher |
: Birkhäuser |
Total Pages |
: 221 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9783034851169 |
ISBN-13 |
: 3034851162 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Numerical Methods for Conservation Laws by : LEVEQUE
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Author |
: Randall J. LeVeque |
Publisher |
: Cambridge University Press |
Total Pages |
: 582 |
Release |
: 2002-08-26 |
ISBN-10 |
: 9781139434188 |
ISBN-13 |
: 1139434187 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Finite Volume Methods for Hyperbolic Problems by : Randall J. LeVeque
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Author |
: M.Yousuff Hussaini |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 587 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642605437 |
ISBN-13 |
: 3642605435 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Upwind and High-Resolution Schemes by : M.Yousuff Hussaini
One of the major achievements in computational fluid dynamics has been the development of numerical methods for simulating compressible flows, combining higher-order accuracy in smooth regions with a sharp, oscillation-free representation of embedded shocks methods and now known as "high-resolution schemes". Together with introductions from the editors written from the modern vantage point this volume collects in one place many of the most significant papers in the development of high-resolution schemes as occured at ICASE.
Author |
: Bernardo Cockburn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 468 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642597213 |
ISBN-13 |
: 3642597211 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Discontinuous Galerkin Methods by : Bernardo Cockburn
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Author |
: François Bouchut |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 148 |
Release |
: 2004-06-25 |
ISBN-10 |
: 3764366656 |
ISBN-13 |
: 9783764366650 |
Rating |
: 4/5 (56 Downloads) |
Synopsis Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws by : François Bouchut
The schemes are analyzed regarding their nonlinear stability Recently developed entropy schemes are presented A formalism is introduced for source terms
Author |
: Timothy J. Barth |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 594 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9783662038826 |
ISBN-13 |
: 366203882X |
Rating |
: 4/5 (26 Downloads) |
Synopsis High-Order Methods for Computational Physics by : Timothy J. Barth
The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.
Author |
: Jean-michel Coron |
Publisher |
: World Scientific |
Total Pages |
: 395 |
Release |
: 2019-01-08 |
ISBN-10 |
: 9789813276192 |
ISBN-13 |
: 9813276193 |
Rating |
: 4/5 (92 Downloads) |
Synopsis One-dimensional Hyperbolic Conservation Laws And Their Applications by : Jean-michel Coron
This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.
Author |
: A Harten |
Publisher |
: Franklin Classics |
Total Pages |
: 68 |
Release |
: 2018-10-15 |
ISBN-10 |
: 0343187825 |
ISBN-13 |
: 9780343187828 |
Rating |
: 4/5 (25 Downloads) |
Synopsis High Resolution Schemes for Hyperbolic Conservation Laws by : A Harten
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.