Sheaves on Manifolds

Sheaves on Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 522
Release :
ISBN-10 : 9783662026618
ISBN-13 : 3662026619
Rating : 4/5 (18 Downloads)

Synopsis Sheaves on Manifolds by : Masaki Kashiwara

Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." –Bulletin of the L.M.S.

Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9783658106331
ISBN-13 : 3658106336
Rating : 4/5 (31 Downloads)

Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Sheaves in Topology

Sheaves in Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 253
Release :
ISBN-10 : 9783642188688
ISBN-13 : 3642188680
Rating : 4/5 (88 Downloads)

Synopsis Sheaves in Topology by : Alexandru Dimca

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.

Categories and Sheaves

Categories and Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 496
Release :
ISBN-10 : 9783540279501
ISBN-13 : 3540279504
Rating : 4/5 (01 Downloads)

Synopsis Categories and Sheaves by : Masaki Kashiwara

Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.

Geometry of Vector Sheaves

Geometry of Vector Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 457
Release :
ISBN-10 : 9789401150064
ISBN-13 : 9401150060
Rating : 4/5 (64 Downloads)

Synopsis Geometry of Vector Sheaves by : Anastasios Mallios

This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.

Global Calculus

Global Calculus
Author :
Publisher : American Mathematical Soc.
Total Pages : 330
Release :
ISBN-10 : 9780821837023
ISBN-13 : 0821837028
Rating : 4/5 (23 Downloads)

Synopsis Global Calculus by : S. Ramanan

The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.

Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 283
Release :
ISBN-10 : 9781475717990
ISBN-13 : 1475717997
Rating : 4/5 (90 Downloads)

Synopsis Foundations of Differentiable Manifolds and Lie Groups by : Frank W. Warner

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers
Author :
Publisher : Springer Science & Business Media
Total Pages : 326
Release :
ISBN-10 : 9781461418092
ISBN-13 : 1461418097
Rating : 4/5 (92 Downloads)

Synopsis Algebraic Geometry over the Complex Numbers by : Donu Arapura

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Cohomology of Sheaves

Cohomology of Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 476
Release :
ISBN-10 : 9783642827839
ISBN-13 : 3642827837
Rating : 4/5 (39 Downloads)

Synopsis Cohomology of Sheaves by : Birger Iversen

This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis.

Smooth Manifolds and Observables

Smooth Manifolds and Observables
Author :
Publisher : Springer Nature
Total Pages : 441
Release :
ISBN-10 : 9783030456504
ISBN-13 : 3030456501
Rating : 4/5 (04 Downloads)

Synopsis Smooth Manifolds and Observables by : Jet Nestruev

This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.