Semiconductor Physics And Devices
Download Semiconductor Physics And Devices full books in PDF, epub, and Kindle. Read online free Semiconductor Physics And Devices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Donald A. Neamen |
Publisher |
: |
Total Pages |
: 746 |
Release |
: 2003 |
ISBN-10 |
: 0071198628 |
ISBN-13 |
: 9780071198622 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Semiconductor Physics and Devices by : Donald A. Neamen
This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.
Author |
: Simon M. Sze |
Publisher |
: John Wiley & Sons |
Total Pages |
: 828 |
Release |
: 2006-12-13 |
ISBN-10 |
: 9780470068304 |
ISBN-13 |
: 0470068302 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Physics of Semiconductor Devices by : Simon M. Sze
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.
Author |
: J.-P. Colinge |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 442 |
Release |
: 2007-05-08 |
ISBN-10 |
: 9780306476228 |
ISBN-13 |
: 0306476223 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Physics of Semiconductor Devices by : J.-P. Colinge
Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.
Author |
: Umesh Mishra |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 583 |
Release |
: 2007-11-28 |
ISBN-10 |
: 9781402064807 |
ISBN-13 |
: 1402064802 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Semiconductor Device Physics and Design by : Umesh Mishra
Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.
Author |
: Vitalii K Dugaev |
Publisher |
: CRC Press |
Total Pages |
: 397 |
Release |
: 2021-11-15 |
ISBN-10 |
: 9781000462296 |
ISBN-13 |
: 1000462293 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Modern Semiconductor Physics and Device Applications by : Vitalii K Dugaev
This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner
Author |
: Simon M. Sze |
Publisher |
: John Wiley & Sons |
Total Pages |
: 944 |
Release |
: 2021-03-03 |
ISBN-10 |
: 9781119429111 |
ISBN-13 |
: 1119429110 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Physics of Semiconductor Devices by : Simon M. Sze
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
Author |
: Marius Grundmann |
Publisher |
: Springer Nature |
Total Pages |
: 905 |
Release |
: 2021-03-06 |
ISBN-10 |
: 9783030515690 |
ISBN-13 |
: 3030515699 |
Rating |
: 4/5 (90 Downloads) |
Synopsis The Physics of Semiconductors by : Marius Grundmann
The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
Author |
: Robert F. Pierret |
Publisher |
: Pearson Educacion |
Total Pages |
: 792 |
Release |
: 1996 |
ISBN-10 |
: 0131784595 |
ISBN-13 |
: 9780131784598 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Semiconductor Device Fundamentals by : Robert F. Pierret
Although roughly a half-century old, the field of study associated with semiconductor devices continues to be dynamic and exciting. New and improved devices are being developed at an almost frantic pace. While the number of devices in complex integrated circuits increases and the size of chips decreases, semiconductor properties are now being engineered to fit design specifications. Semiconductor Device Fundamentals serves as an excellent introduction to this fascinating field. Based in part on the Modular Series on Solid State Devices, this textbook explains the basic terminology, models, properties, and concepts associated with semiconductors and semiconductor devices. The book provides detailed insight into the internal workings of building block device structures and systematically develops the analytical tools needed to solve practical device problems.
Author |
: Rolf Enderlein |
Publisher |
: World Scientific |
Total Pages |
: 786 |
Release |
: 1997 |
ISBN-10 |
: 9789810223878 |
ISBN-13 |
: 9810223870 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Fundamentals of Semiconductor Physics and Devices by : Rolf Enderlein
This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both.Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource.In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix.
Author |
: J.S. Yuan |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 352 |
Release |
: 1998-05-31 |
ISBN-10 |
: 0306457245 |
ISBN-13 |
: 9780306457241 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Semiconductor Device Physics and Simulation by : J.S. Yuan
The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.