Metal Oxide Nanostructures

Metal Oxide Nanostructures
Author :
Publisher : Elsevier
Total Pages : 331
Release :
ISBN-10 : 9780128115053
ISBN-13 : 012811505X
Rating : 4/5 (53 Downloads)

Synopsis Metal Oxide Nanostructures by : Daniela Nunes

Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy

Colloidal Metal Oxide Nanoparticles

Colloidal Metal Oxide Nanoparticles
Author :
Publisher : Elsevier
Total Pages : 612
Release :
ISBN-10 : 9780128133583
ISBN-13 : 0128133589
Rating : 4/5 (83 Downloads)

Synopsis Colloidal Metal Oxide Nanoparticles by :

Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. - Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques - Presents key applications, including biomedical, energy, electronic and environmental - Discusses the most relevant techniques for synthesis, patterning and characterization

Metal Oxide Nanoparticles in Organic Solvents

Metal Oxide Nanoparticles in Organic Solvents
Author :
Publisher : Springer Science & Business Media
Total Pages : 223
Release :
ISBN-10 : 9781848826717
ISBN-13 : 1848826710
Rating : 4/5 (17 Downloads)

Synopsis Metal Oxide Nanoparticles in Organic Solvents by : Markus Niederberger

Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.

The Synthesis of Novel Metal and Metal Oxide Nanoparticles with Applications Towards Catalysis

The Synthesis of Novel Metal and Metal Oxide Nanoparticles with Applications Towards Catalysis
Author :
Publisher :
Total Pages : 152
Release :
ISBN-10 : OCLC:810064995
ISBN-13 :
Rating : 4/5 (95 Downloads)

Synopsis The Synthesis of Novel Metal and Metal Oxide Nanoparticles with Applications Towards Catalysis by : Meredith Joanne McMurdo

This dissertation describes the synthesis of novel nanoparticles that are interesting for catalytic applications. The decomposition of RhCp(C2H4)2 and Rh(hfacac)(CO)2 were investigated, and the complex RhCp(C2H4)2 was successfully shown to decompose to rhodium nanoparticles. Analysis of the decomposition chemistry was used to control nanoparticle seed formation and growth. New stabilizer ligands, both polymeric and molecular, were attempted for the synthesis of rhodium nanoparticles. Polymeric stabilizers were screened as replacements for the widely used polyvinylpyrollidone (PVP) surfactant, however none afforded the high degree of control exhibited by PVP. However, molecular stabilizers were screened and small, monodisperse rhodium nanoparticles were synthesized with the stabilizer octadecylphosphonic acid, with a size and size dispersity of 1.92 +/-0.16 nm. A concurrent hydrogenation catalytic process was also utilized for the synthesis of small rhodium seed particles. In this nanoparticle synthesis, a rhodium precursor and a stabilizer were combined in the presence of an olefin and hydrogen, which aids in decomposition of the rhodium precursor to nanoparticles, and also catalytically converts the olefin to a saturated compound. The rate of hydrogen uptake was monitored and fit to a two-step autocatalytic mechanism correlated to nanoparticle formation and growth. Two new rhodium complexes were synthesized that contained a stabilizer ligand, however the most successful attempt to produce small, monodisperse rhodium nanoparticles by this process was with the rhodium source [(COD)Rh(NCCH3)2]BF4, and the stabilizer (Bu4N)2HPO4 in the presence of an equivalent of Proton Sponge0. Rhodium nanoparticles synthesized by this process have a size and size distribution of 1.88 +/-0.27 nm. The presence of olefin and hydrogen pressure of 42 psi was found to be ideal for the stabilization of nanoparticles during their formation. Also, reactant concentrations and the rate of the cyclohexene consumption are crucial to yield nanoparticles with this excellent size dispersity. Growth reactions with these small rhodium nanoparticles have been successful the synthesis of larger nanoparticles under conditions involving alternate stabilizers. The small nanoparticles were then tested and found to be useful as seed particles in the synthesis of larger rhodium nanoparticles. For each procedure, a mixture of 1-hexadecylamine, adamantane carboxylic acid, and 1,2-hexadecanediol was used to stabilize the nanoparticles. The use of synthesized seed particles allowed for the formation of tetrahedral (average edge length: 4.77 +/- 0.72 nm) or icosahedral shaped particles, depending on reaction temperature. Subsequent characterization revealed that approximately half of the tetrahedrally shaped nanoparticles are in fact triangular flat rafts, where one corner of the tetrahedron appears to be "cut off." However, the use of in situ seeds resulted in the formation of multipod structures. The multipods are single crystals with 2-8 arms per multipod, that propagate both the (110) and (111) directions. The synthesis and characterization of mixed-metal oxide spinel nanoparticles was then attempted for water oxidation catalysis. Nanoparticles of the compositions MnFe2O4 and CoFe2O4 (5.7 nm and 6.1 nm respectively) were synthesized according to a literature procedure with the stabilizers oleic acid and oleylamine, however they were characterized by ICP-OES to have low M:Fe (M = Mn, Co) ratios of 1:5 and 1:4 respectively. Nanoparticles of NiFe2O4 (8.0 nm) were also synthesized by a similar approach, and had the expected Ni:Fe ratio of 1:2 by ICP-OES. Cubic nanoparticles of Co3O4 were also synthesized, and through a subsequent cation exchange reaction with this material, CuxCo3-xO4 and NixCo3-xO4 nanoparticles could be synthesized with varying degrees of copper or nickel incorporation. Linear scan voltammograms were conducted on anodes modified with these nanoparticle materials. For the mixed-metal ferrites, CoFe2O4 showed the lowest overpotentials in the water oxidation reaction in the range of 0-100 mA cm-2. Copper modified Co3O4 nanoparticles had a lower onset potential than Co3O4 and performed with lower overpotentials at low current densities (20 mA cm-2). The nickel modified Co3O4 nanoparticles were superior to the other MxCo3-xO4 materials at all current densities measured (0-100 mA cm-2).

Synthesis, Properties, and Applications of Oxide Nanomaterials

Synthesis, Properties, and Applications of Oxide Nanomaterials
Author :
Publisher : John Wiley & Sons
Total Pages : 640
Release :
ISBN-10 : 9780470108963
ISBN-13 : 0470108967
Rating : 4/5 (63 Downloads)

Synopsis Synthesis, Properties, and Applications of Oxide Nanomaterials by : José A. Rodriguez

Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.

Metal Oxide Nanocomposites

Metal Oxide Nanocomposites
Author :
Publisher : John Wiley & Sons
Total Pages : 432
Release :
ISBN-10 : 9781119364733
ISBN-13 : 1119364736
Rating : 4/5 (33 Downloads)

Synopsis Metal Oxide Nanocomposites by : B. Raneesh

Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal9;]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.

Metal Oxide Nanostructures Chemistry

Metal Oxide Nanostructures Chemistry
Author :
Publisher : Oxford University Press
Total Pages : 400
Release :
ISBN-10 : 9780190928124
ISBN-13 : 0190928123
Rating : 4/5 (24 Downloads)

Synopsis Metal Oxide Nanostructures Chemistry by : Jean-Pierre Jolivet

This much-anticipated new edition of Jolivet's work builds on the edition published in 2000. It is entirely updated, restructured and increased in content. The book focuses on the formation by techniques of green chemistry of oxide nanoparticles having a technological interest. Jolivet introduces the most recent concepts and modelings such as dynamics of particle growth, ordered aggregation, ionic and electronic interfacial transfers. A general view of the metal hydroxides, oxy-hydroxides and oxides through the periodic table is given, highlighting the influence of the synthesis conditions on crystalline structure, size and morphology of nanoparticles. The formation of aluminum, iron, titanium, manganese and zirconium oxides are specifically studied. These nanomaterials have a special interest in many technological fields such as ceramic powders, catalysis and photocatalysis, colored pigments, polymers, cosmetics and also in some biological or environmental phenomena.

Iron Oxide Nanoparticles for Biomedical Applications

Iron Oxide Nanoparticles for Biomedical Applications
Author :
Publisher : Elsevier
Total Pages : 336
Release :
ISBN-10 : 9780081012758
ISBN-13 : 0081012756
Rating : 4/5 (58 Downloads)

Synopsis Iron Oxide Nanoparticles for Biomedical Applications by : Sophie Laurent

Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine. - Unlocks the potential of iron oxide nanoparticles to transform diagnostic imaging techniques - Contains full coverage of new developments and recent research, making this essential reading for researchers and engineers alike - Explains the synthesis, processing and characterization of iron oxide nanoparticles with a view to their use in biomedicine

Near-critical and supercritical hydrothermal flow synthesis of metal oxide nanoparticles and hybrid metal oxide nanoparticles presenting clickable anchors

Near-critical and supercritical hydrothermal flow synthesis of metal oxide nanoparticles and hybrid metal oxide nanoparticles presenting clickable anchors
Author :
Publisher : KIT Scientific Publishing
Total Pages : 298
Release :
ISBN-10 : 9783731502623
ISBN-13 : 3731502623
Rating : 4/5 (23 Downloads)

Synopsis Near-critical and supercritical hydrothermal flow synthesis of metal oxide nanoparticles and hybrid metal oxide nanoparticles presenting clickable anchors by : Daschner de Tercero, Maren

"The continuous hydrothermal flow synthesis of functionalized and non-functionalized nanoparticle dispersions was pursued. Besides improving the understanding of the relationship between process variables and the resulting nanoparticle dispersions, the usability of this process was extended by introducing clickable organic modifiers, a step toward the development of a convenient and versatile process for the synthesis of metal oxide nanoparticles with universal anchors on their surface."--Publisher's website.