Rule Based Systems for Big Data

Rule Based Systems for Big Data
Author :
Publisher : Springer
Total Pages : 127
Release :
ISBN-10 : 9783319236964
ISBN-13 : 3319236962
Rating : 4/5 (64 Downloads)

Synopsis Rule Based Systems for Big Data by : Han Liu

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Evolutionary and Swarm Intelligence Algorithms

Evolutionary and Swarm Intelligence Algorithms
Author :
Publisher : Springer
Total Pages : 194
Release :
ISBN-10 : 9783319913414
ISBN-13 : 3319913417
Rating : 4/5 (14 Downloads)

Synopsis Evolutionary and Swarm Intelligence Algorithms by : Jagdish Chand Bansal

This book is a delight for academics, researchers and professionals working in evolutionary and swarm computing, computational intelligence, machine learning and engineering design, as well as search and optimization in general. It provides an introduction to the design and development of a number of popular and recent swarm and evolutionary algorithms with a focus on their applications in engineering problems in diverse domains. The topics discussed include particle swarm optimization, the artificial bee colony algorithm, Spider Monkey optimization algorithm, genetic algorithms, constrained multi-objective evolutionary algorithms, genetic programming, and evolutionary fuzzy systems. A friendly and informative treatment of the topics makes this book an ideal reference for beginners and those with experience alike.

Applications of Big Data Analytics

Applications of Big Data Analytics
Author :
Publisher : Springer
Total Pages : 219
Release :
ISBN-10 : 9783319764726
ISBN-13 : 3319764721
Rating : 4/5 (26 Downloads)

Synopsis Applications of Big Data Analytics by : Mohammed M. Alani

This timely text/reference reviews the state of the art of big data analytics, with a particular focus on practical applications. An authoritative selection of leading international researchers present detailed analyses of existing trends for storing and analyzing big data, together with valuable insights into the challenges inherent in current approaches and systems. This is further supported by real-world examples drawn from a broad range of application areas, including healthcare, education, and disaster management. The text also covers, typically from an application-oriented perspective, advances in data science in such areas as big data collection, searching, analysis, and knowledge discovery. Topics and features: Discusses a model for data traffic aggregation in 5G cellular networks, and a novel scheme for resource allocation in 5G networks with network slicing Explores methods that use big data in the assessment of flood risks, and apply neural networks techniques to monitor the safety of nuclear power plants Describes a system which leverages big data analytics and the Internet of Things in the application of drones to aid victims in disaster scenarios Proposes a novel deep learning-based health data analytics application for sleep apnea detection, and a novel pathway for diagnostic models of headache disorders Reviews techniques for educational data mining and learning analytics, and introduces a scalable MapReduce graph partitioning approach for high degree vertices Presents a multivariate and dynamic data representation model for the visualization of healthcare data, and big data analytics methods for software reliability assessment This practically-focused volume is an invaluable resource for all researchers, academics, data scientists and business professionals involved in the planning, designing, and implementation of big data analytics projects. Dr. Mohammed M. Alani is an Associate Professor in Computer Engineering and currently is the Provost at Al Khawarizmi International College, Abu Dhabi, UAE. Dr. Hissam Tawfik is a Professor of Computer Science in the School of Computing, Creative Technologies & Engineering at Leeds Beckett University, UK. Dr. Mohammed Saeed is a Professor in Computing and currently is the Vice President for Academic Affairs and Research at the University of Modern Sciences, Dubai, UAE. Dr. Obinna Anya is a Research Staff Member at IBM Research – Almaden, San Jose, CA, USA.

Fuzzy Logic and Applications

Fuzzy Logic and Applications
Author :
Publisher : Springer
Total Pages : 276
Release :
ISBN-10 : 9783030125448
ISBN-13 : 3030125440
Rating : 4/5 (48 Downloads)

Synopsis Fuzzy Logic and Applications by : Robert Fullér

This book constitutes the post-conference proceedings of the 12th International Workshop on Fuzzy Logic and Applications, WILF 2018, held in Genoa, Italy, in September 2018. The 17 revised full papers and 9 short papers were carefully reviewed and selected from 26 submissions. The papers are organized in topical sections on fuzzy logic theory, recent applications of fuzzy logic, and fuzzy decision making. Also included are papers from the round table "Zadeh and the future of logic" and a tutorial.

Uncertainty Modelling In Knowledge Engineering And Decision Making - Proceedings Of The 12th International Flins Conference (Flins 2016)

Uncertainty Modelling In Knowledge Engineering And Decision Making - Proceedings Of The 12th International Flins Conference (Flins 2016)
Author :
Publisher : World Scientific
Total Pages : 1207
Release :
ISBN-10 : 9789813146983
ISBN-13 : 9813146982
Rating : 4/5 (83 Downloads)

Synopsis Uncertainty Modelling In Knowledge Engineering And Decision Making - Proceedings Of The 12th International Flins Conference (Flins 2016) by : Xianyi Zeng

FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to include Computational Intelligence for applied research. The contributions to the 12th of FLINS conference cover state-of-the-art research, development, and technology for computational intelligence systems, both from the foundations and the applications points-of-view.

Soft Computing and Signal Processing

Soft Computing and Signal Processing
Author :
Publisher : Springer Nature
Total Pages : 753
Release :
ISBN-10 : 9789811524752
ISBN-13 : 9811524750
Rating : 4/5 (52 Downloads)

Synopsis Soft Computing and Signal Processing by : V. Sivakumar Reddy

This book presents selected research papers on current developments in the fields of soft computing and signal processing from the Second International Conference on Soft Computing and Signal Processing (ICSCSP 2019). The respective contributions address topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning, and discuss various aspects of these topics, e.g. technological considerations, product implementation, and application issues.

Big Data Computing

Big Data Computing
Author :
Publisher : CRC Press
Total Pages : 397
Release :
ISBN-10 : 9781003822721
ISBN-13 : 100382272X
Rating : 4/5 (21 Downloads)

Synopsis Big Data Computing by : Tanvir Habib Sardar

This book primarily aims to provide an in-depth understanding of recent advances in big data computing technologies, methodologies, and applications along with introductory details of big data computing models such as Apache Hadoop, MapReduce, Hive, Pig, Mahout in-memory storage systems, NoSQL databases, and big data streaming services such as Apache Spark, Kafka, and so forth. It also covers developments in big data computing applications such as machine learning, deep learning, graph processing, and many others. Features: Provides comprehensive analysis of advanced aspects of big data challenges and enabling technologies. Explains computing models using real-world examples and dataset-based experiments. Includes case studies, quality diagrams, and demonstrations in each chapter. Describes modifications and optimization of existing technologies along with the novel big data computing models. Explores references to machine learning, deep learning, and graph processing. This book is aimed at graduate students and researchers in high-performance computing, data mining, knowledge discovery, and distributed computing.

Big Data

Big Data
Author :
Publisher : Springer
Total Pages : 598
Release :
ISBN-10 : 9789811329227
ISBN-13 : 9811329222
Rating : 4/5 (27 Downloads)

Synopsis Big Data by : Zongben Xu

This volume constitutes the proceedings of the 6th CCF Conference, Big Data 2018, held in Xi'an, China, in October 2018. The 32 revised full papers presented in this volume were carefully reviewed and selected from 880 submissions. The papers are organized in topical sections on natural language processing and text mining; big data analytics and smart computing; big data applications; the application of big data in machine learning; social networks and recommendation systems; parallel computing and storage of big data; data quality control and data governance; big data system and management.

Recent Developments in Computational Collective Intelligence

Recent Developments in Computational Collective Intelligence
Author :
Publisher : Springer
Total Pages : 206
Release :
ISBN-10 : 9783319017877
ISBN-13 : 331901787X
Rating : 4/5 (77 Downloads)

Synopsis Recent Developments in Computational Collective Intelligence by : Amelia Badica

The book consists of 19 extended and revised chapters based on original works presented during a poster session organized within the 5th International Conference on Computational Collective Intelligence that was held between 11 and 13 of September 2013 in Craiova, Romania. The book is divided into three parts. The first part is titled “Agents and Multi-Agent Systems” and consists of 8 chapters that concentrate on many problems related to agent and multi-agent systems, including: formal models, agent autonomy, emergent properties, agent programming, agent-based simulation and planning. The second part of the book is titled “Intelligent Computational Methods” and consists of 6 chapters. The authors present applications of various intelligent computational methods like neural networks, mathematical optimization and multistage decision processes in areas like cooperation, character recognition, wireless networks, transport, and metal structures. The third part of the book is titled “Language and Knowledge Processing Systems”, and consists of 5 papers devoted to processing methods for knowledge and language information in various applications, including: language identification, corpus comparison, opinion classification, group decision making, and rule bases.

Anomaly Detection and Complex Event Processing Over IoT Data Streams

Anomaly Detection and Complex Event Processing Over IoT Data Streams
Author :
Publisher : Academic Press
Total Pages : 408
Release :
ISBN-10 : 9780128238196
ISBN-13 : 0128238194
Rating : 4/5 (96 Downloads)

Synopsis Anomaly Detection and Complex Event Processing Over IoT Data Streams by : Patrick Schneider

Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented –the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing. - Provides the state-of-the-art in IoT Data Stream Processing, Semantic Data Enrichment, Reasoning and Knowledge - Covers extraction (Anomaly Detection) - Illustrates new, scalable and reliable processing techniques based on IoT stream technologies - Offers applications to new, real-time anomaly detection scenarios in the health domain