Robustness Theory and Application

Robustness Theory and Application
Author :
Publisher : John Wiley & Sons
Total Pages : 278
Release :
ISBN-10 : 9781118669372
ISBN-13 : 1118669371
Rating : 4/5 (72 Downloads)

Synopsis Robustness Theory and Application by : Brenton R. Clarke

A preeminent expert in the field explores new and exciting methodologies in the ever-growing field of robust statistics Used to develop data analytical methods, which are resistant to outlying observations in the data, while capable of detecting outliers, robust statistics is extremely useful for solving an array of common problems, such as estimating location, scale, and regression parameters. Written by an internationally recognized expert in the field of robust statistics, this book addresses a range of well-established techniques while exploring, in depth, new and exciting methodologies. Local robustness and global robustness are discussed, and problems of non-identifiability and adaptive estimation are considered. Rather than attempt an exhaustive investigation of robustness, the author provides readers with a timely review of many of the most important problems in statistical inference involving robust estimation, along with a brief look at confidence intervals for location. Throughout, the author meticulously links research in maximum likelihood estimation with the more general M-estimation methodology. Specific applications and R and some MATLAB subroutines with accompanying data sets—available both in the text and online—are employed wherever appropriate. Providing invaluable insights and guidance, Robustness Theory and Application: Offers a balanced presentation of theory and applications within each topic-specific discussion Features solved examples throughout which help clarify complex and/or difficult concepts Meticulously links research in maximum likelihood type estimation with the more general M-estimation methodology Delves into new methodologies which have been developed over the past decade without stinting on coverage of “tried-and-true” methodologies Includes R and some MATLAB subroutines with accompanying data sets, which help illustrate the power of the methods described Robustness Theory and Application is an important resource for all statisticians interested in the topic of robust statistics. This book encompasses both past and present research, making it a valuable supplemental text for graduate-level courses in robustness.

Robustness Theory and Application

Robustness Theory and Application
Author :
Publisher : John Wiley & Sons
Total Pages : 243
Release :
ISBN-10 : 9781118669501
ISBN-13 : 1118669509
Rating : 4/5 (01 Downloads)

Synopsis Robustness Theory and Application by : Brenton R. Clarke

A preeminent expert in the field explores new and exciting methodologies in the ever-growing field of robust statistics Used to develop data analytical methods, which are resistant to outlying observations in the data, while capable of detecting outliers, robust statistics is extremely useful for solving an array of common problems, such as estimating location, scale, and regression parameters. Written by an internationally recognized expert in the field of robust statistics, this book addresses a range of well-established techniques while exploring, in depth, new and exciting methodologies. Local robustness and global robustness are discussed, and problems of non-identifiability and adaptive estimation are considered. Rather than attempt an exhaustive investigation of robustness, the author provides readers with a timely review of many of the most important problems in statistical inference involving robust estimation, along with a brief look at confidence intervals for location. Throughout, the author meticulously links research in maximum likelihood estimation with the more general M-estimation methodology. Specific applications and R and some MATLAB subroutines with accompanying data sets—available both in the text and online—are employed wherever appropriate. Providing invaluable insights and guidance, Robustness Theory and Application: Offers a balanced presentation of theory and applications within each topic-specific discussion Features solved examples throughout which help clarify complex and/or difficult concepts Meticulously links research in maximum likelihood type estimation with the more general M-estimation methodology Delves into new methodologies which have been developed over the past decade without stinting on coverage of “tried-and-true” methodologies Includes R and some MATLAB subroutines with accompanying data sets, which help illustrate the power of the methods described Robustness Theory and Application is an important resource for all statisticians interested in the topic of robust statistics. This book encompasses both past and present research, making it a valuable supplemental text for graduate-level courses in robustness.

Robust Control

Robust Control
Author :
Publisher : John Wiley & Sons
Total Pages : 652
Release :
ISBN-10 : 9781118754429
ISBN-13 : 1118754425
Rating : 4/5 (29 Downloads)

Synopsis Robust Control by : Kang-Zhi Liu

Comprehensive and up to date coverage of robust control theory and its application • Presented in a well-planned and logical way • Written by a respected leading author, with extensive experience in robust control • Accompanying website provides solutions manual and other supplementary material

Robust Statistics

Robust Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 466
Release :
ISBN-10 : 9781119214687
ISBN-13 : 1119214688
Rating : 4/5 (87 Downloads)

Synopsis Robust Statistics by : Ricardo A. Maronna

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Robustness

Robustness
Author :
Publisher : Princeton University Press
Total Pages : 453
Release :
ISBN-10 : 9780691170978
ISBN-13 : 0691170975
Rating : 4/5 (78 Downloads)

Synopsis Robustness by : Lars Peter Hansen

The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.

Robustness in Statistics

Robustness in Statistics
Author :
Publisher :
Total Pages : 330
Release :
ISBN-10 : MINN:31951000026509X
ISBN-13 :
Rating : 4/5 (9X Downloads)

Synopsis Robustness in Statistics by : Robert L. Launer

An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.

A Course in Robust Control Theory

A Course in Robust Control Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 427
Release :
ISBN-10 : 9781475732900
ISBN-13 : 1475732902
Rating : 4/5 (00 Downloads)

Synopsis A Course in Robust Control Theory by : Geir E. Dullerud

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.

A Practical Approach to Robustness Analysis with Aeronautical Applications

A Practical Approach to Robustness Analysis with Aeronautical Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 213
Release :
ISBN-10 : 9780306462832
ISBN-13 : 0306462834
Rating : 4/5 (32 Downloads)

Synopsis A Practical Approach to Robustness Analysis with Aeronautical Applications by : Gilles Ferreres

The purpose of A Practical Approach to Robustness Analysis with Aeronautical Applications is twofold. First, it is to introduce as clearly as possible the mu framework, while the second is to emphasize its practical usefulness. To this aim, classical and advanced mu tools are first presented, then applied to a range of engineering problems, namely a missile, a large rigid or flexible transport aircraft and a highly flexible telescope mock-up.

Robust and Adaptive Control

Robust and Adaptive Control
Author :
Publisher : Springer Science & Business Media
Total Pages : 506
Release :
ISBN-10 : 9781447143963
ISBN-13 : 1447143965
Rating : 4/5 (63 Downloads)

Synopsis Robust and Adaptive Control by : Eugene Lavretsky

Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features of the methods described; and · problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.