Robust Speech

Robust Speech
Author :
Publisher : BoD – Books on Demand
Total Pages : 471
Release :
ISBN-10 : 9783902613080
ISBN-13 : 3902613084
Rating : 4/5 (80 Downloads)

Synopsis Robust Speech by : Michael Grimm

This book on Robust Speech Recognition and Understanding brings together many different aspects of the current research on automatic speech recognition and language understanding. The first four chapters address the task of voice activity detection which is considered an important issue for all speech recognition systems. The next chapters give several extensions to state-of-the-art HMM methods. Furthermore, a number of chapters particularly address the task of robust ASR under noisy conditions. Two chapters on the automatic recognition of a speaker's emotional state highlight the importance of natural speech understanding and interpretation in voice-driven systems. The last chapters of the book address the application of conversational systems on robots, as well as the autonomous acquisition of vocalization skills.

Robust Automatic Speech Recognition

Robust Automatic Speech Recognition
Author :
Publisher : Academic Press
Total Pages : 308
Release :
ISBN-10 : 9780128026168
ISBN-13 : 0128026162
Rating : 4/5 (68 Downloads)

Synopsis Robust Automatic Speech Recognition by : Jinyu Li

Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years

New Era for Robust Speech Recognition

New Era for Robust Speech Recognition
Author :
Publisher : Springer
Total Pages : 433
Release :
ISBN-10 : 9783319646800
ISBN-13 : 331964680X
Rating : 4/5 (00 Downloads)

Synopsis New Era for Robust Speech Recognition by : Shinji Watanabe

This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.

Robust Speech Recognition of Uncertain or Missing Data

Robust Speech Recognition of Uncertain or Missing Data
Author :
Publisher : Springer Science & Business Media
Total Pages : 387
Release :
ISBN-10 : 9783642213175
ISBN-13 : 3642213170
Rating : 4/5 (75 Downloads)

Synopsis Robust Speech Recognition of Uncertain or Missing Data by : Dorothea Kolossa

Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition. The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.

Robust Speech Recognition in Embedded Systems and PC Applications

Robust Speech Recognition in Embedded Systems and PC Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 193
Release :
ISBN-10 : 9780306470271
ISBN-13 : 0306470276
Rating : 4/5 (71 Downloads)

Synopsis Robust Speech Recognition in Embedded Systems and PC Applications by : Jean-Claude Junqua

Robust Speech Recognition in Embedded Systems and PC Applications provides a link between the technology and the application worlds. As speech recognition technology is now good enough for a number of applications and the core technology is well established around hidden Markov models many of the differences between systems found in the field are related to implementation variants. We distinguish between embedded systems and PC-based applications. Embedded applications are usually cost sensitive and require very simple and optimized methods to be viable. Robust Speech Recognition in Embedded Systems and PC Applications reviews the problems of robust speech recognition, summarizes the current state of the art of robust speech recognition while providing some perspectives, and goes over the complementary technologies that are necessary to build an application, such as dialog and user interface technologies. Robust Speech Recognition in Embedded Systems and PC Applications is divided into five chapters. The first one reviews the main difficulties encountered in automatic speech recognition when the type of communication is unknown. The second chapter focuses on environment-independent/adaptive speech recognition approaches and on the mainstream methods applicable to noise robust speech recognition. The third chapter discusses several critical technologies that contribute to making an application usable. It also provides some design recommendations on how to design prompts, generate user feedback and develop speech user interfaces. The fourth chapter reviews several techniques that are particularly useful for embedded systems or to decrease computational complexity. It also presents some case studies for embedded applications and PC-based systems. Finally, the fifth chapter provides a future outlook for robust speech recognition, emphasizing the areas that the author sees as the most promising for the future. Robust Speech Recognition in Embedded Systems and PC Applications serves as a valuable reference and although not intended as a formal University textbook, contains some material that can be used for a course at the graduate or undergraduate level. It is a good complement for the book entitled Robustness in Automatic Speech Recognition: Fundamentals and Applications co-authored by the same author.

Recent Advances in Robust Speech Recognition Technology

Recent Advances in Robust Speech Recognition Technology
Author :
Publisher : Bentham Science
Total Pages : 223
Release :
ISBN-10 : 9781608051724
ISBN-13 : 1608051722
Rating : 4/5 (24 Downloads)

Synopsis Recent Advances in Robust Speech Recognition Technology by : Javier Ramirez

"This E-book is a collection of articles that describe advances in speech recognition technology. Robustness in speech recognition refers to the need to maintain high speech recognition accuracy even when the quality of the input speech is degraded, or whe"

Techniques for Noise Robustness in Automatic Speech Recognition

Techniques for Noise Robustness in Automatic Speech Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 514
Release :
ISBN-10 : 9781119970880
ISBN-13 : 1119970881
Rating : 4/5 (80 Downloads)

Synopsis Techniques for Noise Robustness in Automatic Speech Recognition by : Tuomas Virtanen

Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field

Robustness in Language and Speech Technology

Robustness in Language and Speech Technology
Author :
Publisher : Springer Science & Business Media
Total Pages : 277
Release :
ISBN-10 : 9789401597197
ISBN-13 : 9401597197
Rating : 4/5 (97 Downloads)

Synopsis Robustness in Language and Speech Technology by : Jean-Claude Junqua

In this book we address robustness issues at the speech recognition and natural language parsing levels, with a focus on feature extraction and noise robust recognition, adaptive systems, language modeling, parsing, and natural language understanding. This book attempts to give a clear overview of the main technologies used in language and speech processing, along with an extensive bibliography to enable topics of interest to be pursued further. It also brings together speech and language technologies often considered separately. Robustness in Language and Speech Technology serves as a valuable reference and although not intended as a formal university textbook, contains some material that can be used for a course at the graduate or undergraduate level.

Techniques for Noise Robustness in Automatic Speech Recognition

Techniques for Noise Robustness in Automatic Speech Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 514
Release :
ISBN-10 : 9781118392669
ISBN-13 : 1118392663
Rating : 4/5 (69 Downloads)

Synopsis Techniques for Noise Robustness in Automatic Speech Recognition by : Tuomas Virtanen

Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field

Robustness in Automatic Speech Recognition

Robustness in Automatic Speech Recognition
Author :
Publisher : Springer Science & Business Media
Total Pages : 457
Release :
ISBN-10 : 9781461312970
ISBN-13 : 1461312973
Rating : 4/5 (70 Downloads)

Synopsis Robustness in Automatic Speech Recognition by : Jean-Claude Junqua

Foreword Looking back the past 30 years. we have seen steady progress made in the area of speech science and technology. I still remember the excitement in the late seventies when Texas Instruments came up with a toy named "Speak-and-Spell" which was based on a VLSI chip containing the state-of-the-art linear prediction synthesizer. This caused a speech technology fever among the electronics industry. Particularly. applications of automatic speech recognition were rigorously attempt ed by many companies. some of which were start-ups founded just for this purpose. Unfortunately. it did not take long before they realized that automatic speech rec ognition technology was not mature enough to satisfy the need of customers. The fever gradually faded away. In the meantime. constant efforts have been made by many researchers and engi neers to improve the automatic speech recognition technology. Hardware capabilities have advanced impressively since that time. In the past few years. we have been witnessing and experiencing the advent of the "Information Revolution." What might be called the second surge of interest to com mercialize speech technology as a natural interface for man-machine communication began in much better shape than the first one. With computers much more powerful and faster. many applications look realistic this time. However. there are still tremendous practical issues to be overcome in order for speech to be truly the most natural interface between humans and machines.