Risk Opportunity Uncertainty And Other Random Models
Download Risk Opportunity Uncertainty And Other Random Models full books in PDF, epub, and Kindle. Read online free Risk Opportunity Uncertainty And Other Random Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alan R. Jones |
Publisher |
: Routledge |
Total Pages |
: 292 |
Release |
: 2018-09-13 |
ISBN-10 |
: 9781351661294 |
ISBN-13 |
: 1351661299 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Risk, Opportunity, Uncertainty and Other Random Models by : Alan R. Jones
Risk, Opportunity, Uncertainty and Other Random Models (Volume V in the Working Guides to Estimating and Forecasting series) goes part way to debunking the myth that research and development cost are somewhat random, as under certain conditions they can be observed to follow a pattern of behaviour referred to as a Norden-Rayleigh Curve, which unfortunately has to be truncated to stop the myth from becoming a reality! However, there is a practical alternative in relation to a particular form of PERT-Beta Curve. However, the major emphasis of this volume is the use of Monte Carlo Simulation as a general technique for narrowing down potential outcomes of multiple interacting variables or cost drivers. Perhaps the most common of these in the evaluation of Risk, Opportunity and Uncertainty. The trouble is that many Monte Carlo Simulation tools are ‘black boxes’ and too few estimators and forecasters really appreciate what is happening inside the ‘black box’. This volume aims to resolve that and offers tips into things that might need to be considered to remove some of the uninformed random input that often creates a misinformed misconception of ‘it must be right!’ Monte Carlo Simulation can be used to model variable determine Critical Paths in a schedule, and is key to modelling Waiting Times and cues with random arisings. Supported by a wealth of figures and tables, this is a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.
Author |
: Alan R. Jones |
Publisher |
: Routledge |
Total Pages |
: 485 |
Release |
: 2018-10-09 |
ISBN-10 |
: 9781351661379 |
ISBN-13 |
: 135166137X |
Rating |
: 4/5 (79 Downloads) |
Synopsis Probability, Statistics and Other Frightening Stuff by : Alan R. Jones
Probability, Statistics and Other Frightening Stuff (Volume II of the Working Guides to Estimating & Forecasting series) considers many of the commonly used Descriptive Statistics in the world of estimating and forecasting. It considers values that are representative of the ‘middle ground’ (Measures of Central Tendency), and the degree of data scatter (Measures of Dispersion and Shape) around the ‘middle ground’ values. A number of Probability Distributions and where they might be used are discussed, along with some fascinating and useful ‘rules of thumb’ or short-cut properties that estimators and forecasters can exploit in plying their trade. With the help of a ‘Correlation Chicken’, the concept of partial correlation is explained, including how the estimator or forecaster can exploit this in reflecting varying levels of independence and imperfect dependence between an output or predicted value (such as cost) and an input or predictor variable such as size. Under the guise of ‘Tails of the unexpected’ the book concludes with two chapters devoted to Hypothesis Testing (or knowing when to accept or reject the validity of an assumed estimating relationship), and a number of statistically-based tests to help the estimator to decide whether to include or exclude a data point as an ‘outlier’, one that appears not to be representative of that which the estimator is tasked to produce. This is a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.
Author |
: Alan R. Jones |
Publisher |
: Routledge |
Total Pages |
: 498 |
Release |
: 2018-10-09 |
ISBN-10 |
: 9781351661447 |
ISBN-13 |
: 1351661442 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Best Fit Lines & Curves by : Alan R. Jones
Best Fit Lines and Curves, and Some Mathe-Magical Transformations (Volume III of the Working Guides to Estimating & Forecasting series) concentrates on techniques for finding the Best Fit Line or Curve to some historical data allowing us to interpolate or extrapolate the implied relationship that will underpin our prediction. A range of simple ‘Moving Measures’ are suggested to smooth the underlying trend and quantify the degree of noise or scatter around that trend. The advantages and disadvantages are discussed and a simple way to offset the latent disadvantage of most Moving Measure Techniques is provided. Simple Linear Regression Analysis, a more formal numerical technique that calculates the line of best fit subject to defined ‘goodness of fit’ criteria. Microsoft Excel is used to demonstrate how to decide whether the line of best fit is a good fit, or just a solution in search of some data. These principles are then extended to cover multiple cost drivers, and how we can use them to quantify 3-Point Estimates. With a deft sleight of hand, certain commonly occurring families of non-linear relationships can be transformed mathe-magically into linear formats, allowing us to exploit the powers of Regression Analysis to find the Best Fit Curves. The concludes with an exploration of the ups and downs of seasonal data (Time Series Analysis). Supported by a wealth of figures and tables, this is a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.
Author |
: Alan R. Jones |
Publisher |
: Routledge |
Total Pages |
: 242 |
Release |
: 2018-09-13 |
ISBN-10 |
: 9781351661355 |
ISBN-13 |
: 1351661353 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Principles, Process and Practice of Professional Number Juggling by : Alan R. Jones
Principles, Process and Practice of Professional Number Juggling (Volume 1 of the Working Guides to Estimating & Forecasting series) sets the scene of TRACEability and good estimate practice that is followed in the other volumes in this series of five working guides. It clarifies the difference between an Estimating Process, Procedure, Approach, Method and Technique. It expands on these definitions of Approach (Top-down, Bottom-up and ‘Ethereal’) and Method (Analogy, Parametric and ‘Trusted Source’) and discusses how these form the basis of all other means of establishing an estimate. This volume also underlines the importance of ‘data normalisation’ in any estimating procedure, and demonstrates that the Estimating by Analogy Method, in essence, is a simple extension of Data Normalisation. The author looks at simple measures of assessing the maturity or health of an estimate, and offers a means of assessing a spreadsheet for any inherent risks or errors that may be introduced by failing to follow good practice in spreadsheet design and build. This book provides a taster of the more numerical techniques covered in the remainder of the series by considering how an estimator can potentially exploit Benford’s Law (traditionally used in Fraud Detection) to identify systematic bias from third party contributors. It will be a valuable resource for estimators, engineers, accountants, project risk specialists as well as students of cost engineering.
Author |
: Alan R. Jones |
Publisher |
: Routledge |
Total Pages |
: 304 |
Release |
: 2018-09-13 |
ISBN-10 |
: 9781351661478 |
ISBN-13 |
: 1351661477 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Learning, Unlearning and Re-Learning Curves by : Alan R. Jones
Learning, Unlearning and Re-learning Curves (Volume IV of the Working Guides to Estimating & Forecasting series) focuses in on Learning Curves, and the various tried and tested models of Wright, Crawford, DeJong, Towill-Bevis and others. It explores the differences and similarities between the various models and examines the key properties that Estimators and Forecasters can exploit. A discussion about Learning Curve Cost Drivers leads to the consideration of a little used but very powerful technique of Learning Curve modelling called Segmentation, which looks at an organisation’s complex learning curve as the product of multiple shallower learning curves. Perhaps the biggest benefit is that it simplifies the calculations in Microsoft Excel where there is a change in the rate of learning observed or expected. The same technique can be used to model and calibrate discontinuities in the learning process that result in setbacks and uplifts in time or cost. This technique is compared with other, better known techniques such as Anderlohr’s. Equivalent Unit Learning is another, relative new technique that can be used alongside traditional completed unit learning to give an early warning of changes in the rates of learning. Finally, a Learning Curve can be exploited to estimate the penalty of collaborative working across multiple partners. Supported by a wealth of figures and tables, this is a valuable resource for estimators, engineers, accountants, project risk specialists, as well as students of cost engineering.
Author |
: Frank H. Knight |
Publisher |
: Cosimo, Inc. |
Total Pages |
: 401 |
Release |
: 2006-11-01 |
ISBN-10 |
: 9781602060050 |
ISBN-13 |
: 1602060053 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Risk, Uncertainty and Profit by : Frank H. Knight
A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 668 |
Release |
: 1994-01-01 |
ISBN-10 |
: 9780309048941 |
ISBN-13 |
: 030904894X |
Rating |
: 4/5 (41 Downloads) |
Synopsis Science and Judgment in Risk Assessment by : National Research Council
The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.
Author |
: Spaseski, Narela |
Publisher |
: IGI Global |
Total Pages |
: 345 |
Release |
: 2017-08-11 |
ISBN-10 |
: 9781522532606 |
ISBN-13 |
: 1522532609 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Alternative Decision-Making Models for Financial Portfolio Management: Emerging Research and Opportunities by : Spaseski, Narela
Economics is an integral aspect to every successful society, yet basic financial practices have gone unchanged for decades. Analyzing unconventional finance methods can provide new ways to ensure personal financial futures on an individual level, as well as boosting international economies. Alternative Decision-Making Models for Financial Portfolio Management: Emerging Research and Opportunities is an essential reference source that discusses methods and techniques that make financial administration more efficient for professionals in economic fields. Featuring relevant topics such as mean-variance portfolio theory, decision tree analysis, risk protection strategies, and asset-liability management, this publication is ideal for academicians, students, economists, and researchers that would like to stay current on new and innovative methods to transform the financial realm.
Author |
: Karan Girotra |
Publisher |
: Harvard Business Review Press |
Total Pages |
: 251 |
Release |
: 2014-06-10 |
ISBN-10 |
: 9781422191545 |
ISBN-13 |
: 1422191540 |
Rating |
: 4/5 (45 Downloads) |
Synopsis The Risk-Driven Business Model by : Karan Girotra
How to outsmart risk Risk has been defined as the potential for losing something of value. In business, that value could be your original investment or your expected future returns. The Risk-Driven Business Model will help you manage risk better by showing how the key choices you make in designing your business models either increase or reduce two characteristic types of risk—information risk, when you make decisions without enough information, and incentive-alignment risk, when decision makers’ incentives are at odds with the broader goals of the company. Leaders who understand how the structure of their business model affects risk have the power to create wealth, revolutionize industries, and shape a better world. INSEAD’s Karan Girotra and Serguei Netessine, noted operations and innovation professors who have consulted with dozens of companies, walk you through a business model audit to determine what key decisions get made in a business, when they get made, who makes them, and why we make the decisions we do. By changing your company’s key decisions within this framework, you can fundamentally alter the risks that will impact your business. This book is for entrepreneurs and executives in companies involved in dynamic industries where the locus of risk is shifting, and includes lessons from Zipcar, Blockbuster, Apple, Benetton, Kickstarter, Walmart, and dozens of other global companies. The Risk-Driven Business Model demystifies business model risk, with clear directives aimed at improving decision making and driving your business forward.
Author |
: Vaughn Tan |
Publisher |
: Columbia University Press |
Total Pages |
: 296 |
Release |
: 2020-07-28 |
ISBN-10 |
: 9780231551878 |
ISBN-13 |
: 0231551878 |
Rating |
: 4/5 (78 Downloads) |
Synopsis The Uncertainty Mindset by : Vaughn Tan
Innovation is how businesses stay ahead of the competition and adapt to market conditions that change in unpredictable and uncertain ways. In the first decade of the twenty-first century, high-end cuisine underwent a profound transformation. Once an industry that prioritized consistency and reliability, it turned into one where constant change was a competitive necessity. A top restaurant’s reputation and success have become so closely bound up with its ability to innovate that a new organizational form, the culinary research and development team, has emerged. The best of these R&D teams continually expand the frontiers of food—they invent a constant stream of new dishes, new cooking processes and methods, and even new ways of experiencing food. How do they achieve this nonstop novelty? And what can culinary research and development teach us about how organizations innovate? Vaughn Tan opens up the black box of elite culinary R&D to provide essential insights. Drawing on years of unprecedented access to the best and most influential culinary R&D teams in the world, he reveals how they exemplify what he calls the uncertainty mindset. Such a mindset intentionally incorporates uncertainty into organization design rather than simply trying to reduce risk. It changes how organizations hire, set goals, and motivate team members and leads organizations to work in highly unconventional ways. A revelatory look at the R&D kitchen, The Uncertainty Mindset upends conventional wisdom about how to organize for innovation and offers practical insights for businesses trying to become innovative and adaptable.