Riemannian Optimization and Its Applications

Riemannian Optimization and Its Applications
Author :
Publisher : Springer Nature
Total Pages : 129
Release :
ISBN-10 : 9783030623913
ISBN-13 : 3030623912
Rating : 4/5 (13 Downloads)

Synopsis Riemannian Optimization and Its Applications by : Hiroyuki Sato

This brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to problems in other fields. To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail. A brief review of recent developments in Riemannian optimization is also provided. Riemannian optimization methods are applicable to many problems in various fields. This brief discusses some important applications including the eigenvalue and singular value decompositions in numerical linear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics.

Convex Functions and Optimization Methods on Riemannian Manifolds

Convex Functions and Optimization Methods on Riemannian Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 365
Release :
ISBN-10 : 9789401583909
ISBN-13 : 9401583900
Rating : 4/5 (09 Downloads)

Synopsis Convex Functions and Optimization Methods on Riemannian Manifolds by : C. Udriste

The object of this book is to present the basic facts of convex functions, standard dynamical systems, descent numerical algorithms and some computer programs on Riemannian manifolds in a form suitable for applied mathematicians, scientists and engineers. It contains mathematical information on these subjects and applications distributed in seven chapters whose topics are close to my own areas of research: Metric properties of Riemannian manifolds, First and second variations of the p-energy of a curve; Convex functions on Riemannian manifolds; Geometric examples of convex functions; Flows, convexity and energies; Semidefinite Hessians and applications; Minimization of functions on Riemannian manifolds. All the numerical algorithms, computer programs and the appendices (Riemannian convexity of functions f:R ~ R, Descent methods on the Poincare plane, Descent methods on the sphere, Completeness and convexity on Finsler manifolds) constitute an attempt to make accesible to all users of this book some basic computational techniques and implementation of geometric structures. To further aid the readers,this book also contains a part of the folklore about Riemannian geometry, convex functions and dynamical systems because it is unfortunately "nowhere" to be found in the same context; existing textbooks on convex functions on Euclidean spaces or on dynamical systems do not mention what happens in Riemannian geometry, while the papers dealing with Riemannian manifolds usually avoid discussing elementary facts. Usually a convex function on a Riemannian manifold is a real valued function whose restriction to every geodesic arc is convex.

Algorithmic Advances in Riemannian Geometry and Applications

Algorithmic Advances in Riemannian Geometry and Applications
Author :
Publisher : Springer
Total Pages : 216
Release :
ISBN-10 : 9783319450261
ISBN-13 : 3319450263
Rating : 4/5 (61 Downloads)

Synopsis Algorithmic Advances in Riemannian Geometry and Applications by : Hà Quang Minh

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.

Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds
Author :
Publisher : Princeton University Press
Total Pages : 240
Release :
ISBN-10 : 9781400830244
ISBN-13 : 1400830249
Rating : 4/5 (44 Downloads)

Synopsis Optimization Algorithms on Matrix Manifolds by : P.-A. Absil

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Recent Advances in Optimization and its Applications in Engineering

Recent Advances in Optimization and its Applications in Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 535
Release :
ISBN-10 : 9783642125980
ISBN-13 : 3642125980
Rating : 4/5 (80 Downloads)

Synopsis Recent Advances in Optimization and its Applications in Engineering by : Moritz Diehl

Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.

Riemannian Computing in Computer Vision

Riemannian Computing in Computer Vision
Author :
Publisher : Springer
Total Pages : 382
Release :
ISBN-10 : 9783319229577
ISBN-13 : 3319229575
Rating : 4/5 (77 Downloads)

Synopsis Riemannian Computing in Computer Vision by : Pavan K. Turaga

This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).

Nonsmooth Optimization and Its Applications

Nonsmooth Optimization and Its Applications
Author :
Publisher : Springer
Total Pages : 154
Release :
ISBN-10 : 9783030113704
ISBN-13 : 3030113701
Rating : 4/5 (04 Downloads)

Synopsis Nonsmooth Optimization and Its Applications by : Seyedehsomayeh Hosseini

Since nonsmooth optimization problems arise in a diverse range of real-world applications, the potential impact of efficient methods for solving such problems is undeniable. Even solving difficult smooth problems sometimes requires the use of nonsmooth optimization methods, in order to either reduce the problem’s scale or simplify its structure. Accordingly, the field of nonsmooth optimization is an important area of mathematical programming that is based on by now classical concepts of variational analysis and generalized derivatives, and has developed a rich and sophisticated set of mathematical tools at the intersection of theory and practice. This volume of ISNM is an outcome of the workshop "Nonsmooth Optimization and its Applications," which was held from May 15 to 19, 2017 at the Hausdorff Center for Mathematics, University of Bonn. The six research articles gathered here focus on recent results that highlight different aspects of nonsmooth and variational analysis, optimization methods, their convergence theory and applications.

An Introduction to Optimization on Smooth Manifolds

An Introduction to Optimization on Smooth Manifolds
Author :
Publisher : Cambridge University Press
Total Pages : 358
Release :
ISBN-10 : 9781009178716
ISBN-13 : 1009178717
Rating : 4/5 (16 Downloads)

Synopsis An Introduction to Optimization on Smooth Manifolds by : Nicolas Boumal

Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.

Population-Based Optimization on Riemannian Manifolds

Population-Based Optimization on Riemannian Manifolds
Author :
Publisher : Springer Nature
Total Pages : 171
Release :
ISBN-10 : 9783031042935
ISBN-13 : 303104293X
Rating : 4/5 (35 Downloads)

Synopsis Population-Based Optimization on Riemannian Manifolds by : Robert Simon Fong

Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual “easy-to-deal-with” Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry. This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space. This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.

Optimization and Its Applications in Control and Data Sciences

Optimization and Its Applications in Control and Data Sciences
Author :
Publisher : Springer
Total Pages : 516
Release :
ISBN-10 : 9783319420561
ISBN-13 : 3319420569
Rating : 4/5 (61 Downloads)

Synopsis Optimization and Its Applications in Control and Data Sciences by : Boris Goldengorin

This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak’s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.