X-Ray Diffraction Crystallography

X-Ray Diffraction Crystallography
Author :
Publisher : Springer Science & Business Media
Total Pages : 320
Release :
ISBN-10 : 9783642166358
ISBN-13 : 3642166350
Rating : 4/5 (58 Downloads)

Synopsis X-Ray Diffraction Crystallography by : Yoshio Waseda

X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

Heat Treating

Heat Treating
Author :
Publisher : ASM International
Total Pages : 1214
Release :
ISBN-10 : 9781615032051
ISBN-13 : 1615032053
Rating : 4/5 (51 Downloads)

Synopsis Heat Treating by : Kiyoshi Funatani

Diffraction Analysis of the Microstructure of Materials

Diffraction Analysis of the Microstructure of Materials
Author :
Publisher : Springer Science & Business Media
Total Pages : 557
Release :
ISBN-10 : 9783662067239
ISBN-13 : 3662067234
Rating : 4/5 (39 Downloads)

Synopsis Diffraction Analysis of the Microstructure of Materials by : Eric J. Mittemeijer

Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

Two-dimensional X-ray Diffraction

Two-dimensional X-ray Diffraction
Author :
Publisher : John Wiley & Sons
Total Pages : 492
Release :
ISBN-10 : 9781119356066
ISBN-13 : 1119356067
Rating : 4/5 (66 Downloads)

Synopsis Two-dimensional X-ray Diffraction by : Bob B. He

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.

Industrial Applications of X-Ray Diffraction

Industrial Applications of X-Ray Diffraction
Author :
Publisher : CRC Press
Total Pages : 1026
Release :
ISBN-10 : 9780824719920
ISBN-13 : 0824719921
Rating : 4/5 (20 Downloads)

Synopsis Industrial Applications of X-Ray Diffraction by : Frank Smith

By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major advances and potential uses.

Microstructure and Texture in Steels

Microstructure and Texture in Steels
Author :
Publisher : Springer Science & Business Media
Total Pages : 484
Release :
ISBN-10 : 9781848824546
ISBN-13 : 1848824548
Rating : 4/5 (46 Downloads)

Synopsis Microstructure and Texture in Steels by : Arunansu Haldar

Microstructure and Texture in Steels and Other Materials comprises a collection of articles pertaining to experimental and theoretical aspects of the evolution of crystallographic texture and microstructure during processing of steels and some other materials. Among the topics covered is the processing-microstructure-texture-property relationship in various kinds of steels, including the latest grade. Special emphasis has been given to introduce recent advances in the characterization of texture and microstructure, as well as modeling. The papers included are written by well-known experts from academia and industrial R and D, which will provide the reader with state-of-the-art, in-depth knowledge of the subject. With these attributes, Microstructure and Texture in Steels and Other Materials is expected to serve the cause of creating awareness of current developments in microstructural science and materials engineering among academic and R and D personnel working in the field.

Bainite and Martensite

Bainite and Martensite
Author :
Publisher : MDPI
Total Pages : 166
Release :
ISBN-10 : 9783039288571
ISBN-13 : 3039288571
Rating : 4/5 (71 Downloads)

Synopsis Bainite and Martensite by : Carlos Garcia-Mateo

The microstructures of both martensite and bainite, although sharing some common features, depict a plethora of subtle differences that made them unique when studied in further detail. Tailoring the final properties of a microstructure based on one or the other as well as in combination with others and exploring more sophisticated concepts, such as Q&P and nanostructured bainite, are the topics which are the focus of research around the world. In understanding the key microstructural parameters controlling the final properties as well as definition of adequate process parameters to attain the desired microstructures requires that a proper understanding of the mechanism ruling their transformation and a detailed characterization first be acheived. The development of new and powerful scientific techniques and equipment (EBSD, APT, HRTEM, etc.) allow us to gain fundamental insights that help to establish some of the principles by which those microstructures are known. The developments accompanying such findings lead to further developments and intensive research providing the required metallurgical support.