Resolution of Curve and Surface Singularities in Characteristic Zero

Resolution of Curve and Surface Singularities in Characteristic Zero
Author :
Publisher : Springer Science & Business Media
Total Pages : 522
Release :
ISBN-10 : 1402020287
ISBN-13 : 9781402020285
Rating : 4/5 (87 Downloads)

Synopsis Resolution of Curve and Surface Singularities in Characteristic Zero by : K. Kiyek

This book covers the beautiful theory of resolutions of surface singularities in characteristic zero. The primary goal is to present in detail, and for the first time in one volume, two proofs for the existence of such resolutions. One construction was introduced by H.W.E. Jung, and another is due to O. Zariski. Jung's approach uses quasi-ordinary singularities and an explicit study of specific surfaces in affine three-space. In particular, a new proof of the Jung-Abhyankar theorem is given via ramification theory. Zariski's method, as presented, involves repeated normalisation and blowing up points. It also uses the uniformization of zero-dimensional valuations of function fields in two variables, for which a complete proof is given. Despite the intention to serve graduate students and researchers of Commutative Algebra and Algebraic Geometry, a basic knowledge on these topics is necessary only. This is obtained by a thorough introduction of the needed algebraic tools in the two appendices.

Resolution of Singularities

Resolution of Singularities
Author :
Publisher : American Mathematical Soc.
Total Pages : 198
Release :
ISBN-10 : 9780821835555
ISBN-13 : 0821835556
Rating : 4/5 (55 Downloads)

Synopsis Resolution of Singularities by : Steven Dale Cutkosky

The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several proofs given for resolution of curves and surfaces in characteristic zero and arbitrary characteristic. Besides explaining the tools needed for understanding resolutions, Cutkosky explains the history and ideas, providing valuable insight and intuition for the novice (or expert). There are many examples and exercises throughout the text. The book is suitable for a second course on an exciting topic in algebraic geometry. A core course on resolutions is contained in Chapters 2 through 6. Additional topics are covered in the final chapters. The prerequisite is a course covering the basic notions of schemes and sheaves.

Lectures on Resolution of Singularities (AM-166)

Lectures on Resolution of Singularities (AM-166)
Author :
Publisher : Princeton University Press
Total Pages : 215
Release :
ISBN-10 : 9781400827800
ISBN-13 : 1400827809
Rating : 4/5 (00 Downloads)

Synopsis Lectures on Resolution of Singularities (AM-166) by : János Kollár

Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem.

Resolution of Surface Singularities

Resolution of Surface Singularities
Author :
Publisher : Springer
Total Pages : 138
Release :
ISBN-10 : 9783540391258
ISBN-13 : 3540391258
Rating : 4/5 (58 Downloads)

Synopsis Resolution of Surface Singularities by : Vincent Cossart

Handbook of Geometry and Topology of Singularities I

Handbook of Geometry and Topology of Singularities I
Author :
Publisher : Springer Nature
Total Pages : 616
Release :
ISBN-10 : 9783030530617
ISBN-13 : 3030530612
Rating : 4/5 (17 Downloads)

Synopsis Handbook of Geometry and Topology of Singularities I by : José Luis Cisneros Molina

This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

$p$-Adic Analysis, Arithmetic and Singularities

$p$-Adic Analysis, Arithmetic and Singularities
Author :
Publisher : American Mathematical Society
Total Pages : 311
Release :
ISBN-10 : 9781470467791
ISBN-13 : 1470467798
Rating : 4/5 (91 Downloads)

Synopsis $p$-Adic Analysis, Arithmetic and Singularities by : Carlos Galindo

This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.

Normal Surface Singularities

Normal Surface Singularities
Author :
Publisher : Springer Nature
Total Pages : 732
Release :
ISBN-10 : 9783031067532
ISBN-13 : 3031067533
Rating : 4/5 (32 Downloads)

Synopsis Normal Surface Singularities by : András Némethi

This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recent topological one, combining their tools and methods. In the first chapters, the book sets out the foundations of the theory of normal surface singularities. This includes a comprehensive presentation of the properties of the link (as an oriented 3-manifold) and of the invariants associated with a resolution, combined with the structure and special properties of the line bundles defined on a resolution. A recurring theme is the comparison of analytic and topological invariants. For example, the Poincaré series of the divisorial filtration is compared to a topological zeta function associated with the resolution graph, and the sheaf cohomologies of the line bundles are compared to the Seiberg–Witten invariants of the link. Equivariant Ehrhart theory is introduced to establish surgery-additivity formulae of these invariants, as well as for the regularization procedures of multivariable series. In addition to recent research, the book also provides expositions of more classical subjects such as the classification of plane and cuspidal curves, Milnor fibrations and smoothing invariants, the local divisor class group, and the Hilbert–Samuel function. It contains a large number of examples of key families of germs: rational, elliptic, weighted homogeneous, superisolated and splice-quotient. It provides concrete computations of the topological invariants of their links (Casson(–Walker) and Seiberg–Witten invariants, Turaev torsion) and of the analytic invariants (geometric genus, Hilbert function of the divisorial filtration, and the analytic semigroup associated with the resolution). The book culminates in a discussion of the topological and analytic lattice cohomologies (as categorifications of the Seiberg–Witten invariant and of the geometric genus respectively) and of the graded roots. Several open problems and conjectures are also formulated. Normal Surface Singularities provides researchers in algebraic and differential geometry, singularity theory, complex analysis, and low-dimensional topology with an invaluable reference on this rich topic, offering a unified presentation of the major results and approaches.

Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Singularities of Embedded Algebraic Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 319
Release :
ISBN-10 : 9783662035801
ISBN-13 : 3662035804
Rating : 4/5 (01 Downloads)

Synopsis Resolution of Singularities of Embedded Algebraic Surfaces by : Shreeram S. Abhyankar

The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Singularity Theory

Singularity Theory
Author :
Publisher : World Scientific
Total Pages : 1083
Release :
ISBN-10 : 9789812707499
ISBN-13 : 9812707492
Rating : 4/5 (99 Downloads)

Synopsis Singularity Theory by : Denis Cheniot

The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory. The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.