Requirements Engineering For Safety Critical Systems
Download Requirements Engineering For Safety Critical Systems full books in PDF, epub, and Kindle. Read online free Requirements Engineering For Safety Critical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Luiz Eduardo G. Martins |
Publisher |
: CRC Press |
Total Pages |
: 229 |
Release |
: 2022-09-01 |
ISBN-10 |
: 9781000793192 |
ISBN-13 |
: 1000793192 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Requirements Engineering for Safety-Critical Systems by : Luiz Eduardo G. Martins
Safety-Critical Systems (SCS) are increasingly present in people's daily activities. In the means of transport, in medical treatments, in industrial processes, in the control of air, land, maritime traffic, and many other situations, we use and depend on SCS. The requirements engineering of any system is crucial for the proper development of the same, and it becomes even more relevant for the development of SCS. Requirements Engineering is a discipline that focuses on the development of techniques, methods, processes, and tools that assist in the design of software and systems, covering the activities of elicitation, analysis, modeling and specification, validation, and management of requirements. The complete specification of system requirements establishes the basis for its architectural design. It offers a description of the functional and quality aspects that should guide the implementation and system evolution. In this book, we discuss essential elements of requirements engineering applied to SCS, such as the relationship between safety/hazard analysis and requirements specification, a balance between conservative and agile methodologies during SCS development, the role of requirements engineering in safety cases, and requirements engineering maturity model for SCS. This book provides relevant insights for professionals, students, and researchers interested in improving the quality of the SCS development process, making system requirements a solid foundation for improving the safety and security of future systems.
Author |
: Luiz Eduardo G Martins |
Publisher |
: |
Total Pages |
: 0 |
Release |
: 2024-10-21 |
ISBN-10 |
: 8770042888 |
ISBN-13 |
: 9788770042888 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Requirements Engineering for Safety-Critical Systems by : Luiz Eduardo G Martins
Safety-Critical Systems (SCS) are increasingly present in people's daily activities. In the means of transport, in medical treatments, in industrial processes, in the control of air, land, maritime traffic, and many other situations, we use and depend on SCS. The requirements engineering of any system is crucial for the proper development of the same, and it becomes even more relevant for the development of SCS. Requirements Engineering is a discipline that focuses on the development of techniques, methods, processes, and tools that assist in the design of software and systems, covering the activities of elicitation, analysis, modeling and specification, validation, and management of requirements. The complete specification of system requirements establishes the basis for its architectural design. It offers a description of the functional and quality aspects that should guide the implementation and system evolution. In this book, we discuss essential elements of requirements engineering applied to SCS, such as the relationship between safety/hazard analysis and requirements specification, a balance between conservative and agile methodologies during SCS development, the role of requirements engineering in safety cases, and requirements engineering maturity model for SCS. This book provides relevant insights for professionals, students, and researchers interested in improving the quality of the SCS development process, making system requirements a solid foundation for improving the safety and security of future systems.
Author |
: Kim Fowler |
Publisher |
: Newnes |
Total Pages |
: 593 |
Release |
: 2009-11-19 |
ISBN-10 |
: 9780080942551 |
ISBN-13 |
: 0080942555 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Mission-Critical and Safety-Critical Systems Handbook by : Kim Fowler
This handbook provides a consolidated, comprehensive information resource for engineers working with mission and safety critical systems. Principles, regulations, and processes common to all critical design projects are introduced in the opening chapters. Expert contributors then offer development models, process templates, and documentation guidelines from their own core critical applications fields: medical, aerospace, and military. Readers will gain in-depth knowledge of how to avoid common pitfalls and meet even the strictest certification standards. Particular emphasis is placed on best practices, design tradeoffs, and testing procedures. - Comprehensive coverage of all key concerns for designers of critical systems including standards compliance, verification and validation, and design tradeoffs - Real-world case studies contained within these pages provide insight from experience
Author |
: David J. Smith |
Publisher |
: Elsevier |
Total Pages |
: 289 |
Release |
: 2010-11-11 |
ISBN-10 |
: 9780080967820 |
ISBN-13 |
: 0080967825 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Safety Critical Systems Handbook by : David J. Smith
Safety Critical Systems Handbook: A Straightfoward Guide to Functional Safety, IEC 61508 (2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery IEC 62061 AND ISO 13849, Third Edition, offers a practical guide to the functional safety standard IEC 61508. The book is organized into three parts. Part A discusses the concept of functional safety and the need to express targets by means of safety integrity levels. It places functional safety in context, along with risk assessment, likelihood of fatality, and the cost of conformance. It also explains the life-cycle approach, together with the basic outline of IEC 61508 (known as BS EN 61508 in the UK). Part B discusses functional safety standards for the process, oil, and gas industries; the machinery sector; and other industries such as rail, automotive, avionics, and medical electrical equipment. Part C presents case studies in the form of exercises and examples. These studies cover SIL targeting for a pressure let-down system, burner control system assessment, SIL targeting, a hypothetical proposal for a rail-train braking system, and hydroelectric dam and tidal gates. - The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards - Helps readers understand the process required to apply safety critical systems standards - Real-world approach helps users to interpret the standard, with case studies and best practice design examples throughout
Author |
: Marvin Rausand |
Publisher |
: John Wiley & Sons |
Total Pages |
: 356 |
Release |
: 2014-03-03 |
ISBN-10 |
: 9781118553381 |
ISBN-13 |
: 1118553381 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Reliability of Safety-Critical Systems by : Marvin Rausand
Presents the theory and methodology for reliability assessments of safety-critical functions through examples from a wide range of applications Reliability of Safety-Critical Systems: Theory and Applications provides a comprehensive introduction to reliability assessments of safety-related systems based on electrical, electronic, and programmable electronic (E/E/PE) technology. With a focus on the design and development phases of safety-critical systems, the book presents theory and methods required to document compliance with IEC 61508 and the associated sector-specific standards. Combining theory and practical applications, Reliability of Safety-Critical Systems: Theory and Applications implements key safety-related strategies and methods to meet quantitative safety integrity requirements. In addition, the book details a variety of reliability analysis methods that are needed during all stages of a safety-critical system, beginning with specification and design and advancing to operations, maintenance, and modification control. The key categories of safety life-cycle phases are featured, including strategies for the allocation of reliability performance requirements; assessment methods in relation to design; and reliability quantification in relation to operation and maintenance. Issues and benefits that arise from complex modern technology developments are featured, as well as: Real-world examples from large industry facilities with major accident potential and products owned by the general public such as cars and tools Plentiful worked examples throughout that provide readers with a deeper understanding of the core concepts and aid in the analysis and solution of common issues when assessing all facets of safety-critical systems Approaches that work on a wide scope of applications and can be applied to the analysis of any safety-critical system A brief appendix of probability theory for reference With an emphasis on how safety-critical functions are introduced into systems and facilities to prevent or mitigate the impact of an accident, this book is an excellent guide for professionals, consultants, and operators of safety-critical systems who carry out practical, risk, and reliability assessments of safety-critical systems. Reliability of Safety-Critical Systems: Theory and Applications is also a useful textbook for courses in reliability assessment of safety-critical systems and reliability engineering at the graduate-level, as well as for consulting companies offering short courses in reliability assessment of safety-critical systems.
Author |
: Chris Hobbs |
Publisher |
: CRC Press |
Total Pages |
: 357 |
Release |
: 2015-10-06 |
ISBN-10 |
: 9781498726719 |
ISBN-13 |
: 1498726712 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Embedded Software Development for Safety-Critical Systems by : Chris Hobbs
Safety-critical devices, whether medical, automotive, or industrial, are increasingly dependent on the correct operation of sophisticated software. Many standards have appeared in the last decade on how such systems should be designed and built. Developers, who previously only had to know how to program devices for their industry, must now understand remarkably esoteric development practices and be prepared to justify their work to external auditors. Embedded Software Development for Safety-Critical Systems discusses the development of safety-critical systems under the following standards: IEC 61508; ISO 26262; EN 50128; and IEC 62304. It details the advantages and disadvantages of many architectural and design practices recommended in the standards, ranging from replication and diversification, through anomaly detection to the so-called "safety bag" systems. Reviewing the use of open-source components in safety-critical systems, this book has evolved from a course text used by QNX Software Systems for a training module on building embedded software for safety-critical devices, including medical devices, railway systems, industrial systems, and driver assistance devices in cars. Although the book describes open-source tools for the most part, it also provides enough information for you to seek out commercial vendors if that’s the route you decide to pursue. All of the techniques described in this book may be further explored through hundreds of learned articles. In order to provide you with a way in, the author supplies references he has found helpful as a working software developer. Most of these references are available to download for free.
Author |
: Chris Hobbs |
Publisher |
: CRC Press |
Total Pages |
: 308 |
Release |
: 2019-08-16 |
ISBN-10 |
: 9781000507331 |
ISBN-13 |
: 1000507335 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Embedded Software Development for Safety-Critical Systems, Second Edition by : Chris Hobbs
This is a book about the development of dependable, embedded software. It is for systems designers, implementers, and verifiers who are experienced in general embedded software development, but who are now facing the prospect of delivering a software-based system for a safety-critical application. It is aimed at those creating a product that must satisfy one or more of the international standards relating to safety-critical applications, including IEC 61508, ISO 26262, EN 50128, EN 50657, IEC 62304, or related standards. Of the first edition, Stephen Thomas, PE, Founder and Editor of FunctionalSafetyEngineer.com said, "I highly recommend Mr. Hobbs' book."
Author |
: Marco Bozzano |
Publisher |
: CRC Press |
Total Pages |
: 288 |
Release |
: 2010-11-12 |
ISBN-10 |
: 9781439803325 |
ISBN-13 |
: 1439803323 |
Rating |
: 4/5 (25 Downloads) |
Synopsis Design and Safety Assessment of Critical Systems by : Marco Bozzano
Safety-critical systems, by definition those systems whose failure can cause catastrophic results for people, the environment, and the economy, are becoming increasingly complex both in their functionality and their interactions with the environment. Unfortunately, safety assessments are still largely done manually, a time-consuming and error-prone
Author |
: Joseph D. Miller |
Publisher |
: John Wiley & Sons |
Total Pages |
: 239 |
Release |
: 2019-12-09 |
ISBN-10 |
: 9781119579670 |
ISBN-13 |
: 1119579678 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Automotive System Safety by : Joseph D. Miller
Contains practical insights into automotive system safety with a focus on corporate safety organization and safety management Functional Safety has become important and mandated in the automotive industry by inclusion of ISO 26262 in OEM requirements to suppliers. This unique and practical guide is geared toward helping small and large automotive companies, and the managers and engineers in those companies, improve automotive system safety. Based on the author’s experience within the field, it is a useful tool for marketing, sales, and business development professionals to understand and converse knowledgeably with customers and prospects. Automotive System Safety: Critical Considerations for Engineering and Effective Management teaches readers how to incorporate automotive system safety efficiently into an organization. Chapters cover: Safety Expectations for Consumers, OEMs, and Tier 1 Suppliers; System Safety vs. Functional Safety; Safety Audits and Assessments; Safety Culture; and Lifecycle Safety. Sections on Determining Risk; Risk Reduction; and Safety of the Intended Function are also presented. In addition, the book discusses causes of safety recalls; how to use metrics as differentiators to win business; criteria for a successful safety organization; and more. Discusses Safety of the Intended Function (SOTIF), with a chapter about an emerging standard (SOTIF, ISO PAS 21448), which is for handling the development of autonomous vehicles Helps safety managers, engineers, directors, and marketing professionals improve their knowledge of the process of FS standards Aimed at helping automotive companies—big and small—and their employees improve system safety Covers auditing and the use of metrics Automotive System Safety: Critical Considerations for Engineering and Effective Management is an excellent book for anyone who oversees the safety and development of automobiles. It will also benefit those who sell and market vehicles to prospective customers.
Author |
: Luca Sterpone |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 153 |
Release |
: 2008-10-10 |
ISBN-10 |
: 9781402089794 |
ISBN-13 |
: 1402089791 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Electronics System Design Techniques for Safety Critical Applications by : Luca Sterpone
What is exactly “Safety”? A safety system should be defined as a system that will not endanger human life or the environment. A safety-critical system requires utmost care in their specification and design in order to avoid possible errors in their implementation that should result in unexpected system’s behavior during his operating “life”. An inappropriate method could lead to loss of life, and will almost certainly result in financial penalties in the long run, whether because of loss of business or because the imposition of fines. Risks of this kind are usually managed with the methods and tools of the “safety engineering”. A life-critical system is designed to 9 lose less than one life per billion (10 ). Nowadays, computers are used at least an order of magnitude more in safety-critical applications compared to two decades ago. Increasingly electronic devices are being used in applications where their correct operation is vital to ensure the safety of the human life and the environment. These application ranging from the anti-lock braking systems (ABS) in automobiles, to the fly-by-wire aircrafts, to biomedical supports to the human care. Therefore, it is vital that electronic designers be aware of the safety implications of the systems they develop. State of the art electronic systems are increasingly adopting progr- mable devices for electronic applications on earthling system. In particular, the Field Programmable Gate Array (FPGA) devices are becoming very interesting due to their characteristics in terms of performance, dimensions and cost.