Representations and Cohomology: Volume 2, Cohomology of Groups and Modules

Representations and Cohomology: Volume 2, Cohomology of Groups and Modules
Author :
Publisher : Cambridge University Press
Total Pages : 296
Release :
ISBN-10 : 0521636523
ISBN-13 : 9780521636520
Rating : 4/5 (23 Downloads)

Synopsis Representations and Cohomology: Volume 2, Cohomology of Groups and Modules by : D. J. Benson

A further introduction to modern developments in the representation theory of finite groups and associative algebras.

Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras

Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 260
Release :
ISBN-10 : 0521636531
ISBN-13 : 9780521636537
Rating : 4/5 (31 Downloads)

Synopsis Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras by : D. J. Benson

An introduction to modern developments in the representation theory of finite groups and associative algebras.

Modular Representation Theory

Modular Representation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 246
Release :
ISBN-10 : 9783540133896
ISBN-13 : 3540133895
Rating : 4/5 (96 Downloads)

Synopsis Modular Representation Theory by : D. Benson

This reprint of a 1983 Yale graduate course makes results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians. Following a review of background material, the lectures examine three closely connected topics in modular representation theory of finite groups: representations rings; almost split sequences and the Auslander-Reiten quiver; and complexity and cohomology varieties, which has become a major theme in representation theory.

Cohomology of Groups

Cohomology of Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 318
Release :
ISBN-10 : 9781468493276
ISBN-13 : 1468493272
Rating : 4/5 (76 Downloads)

Synopsis Cohomology of Groups by : Kenneth S. Brown

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.

Representations of Algebraic Groups

Representations of Algebraic Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 594
Release :
ISBN-10 : 9780821843772
ISBN-13 : 082184377X
Rating : 4/5 (72 Downloads)

Synopsis Representations of Algebraic Groups by : Jens Carsten Jantzen

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Modular Forms and Galois Cohomology

Modular Forms and Galois Cohomology
Author :
Publisher : Cambridge University Press
Total Pages : 358
Release :
ISBN-10 : 052177036X
ISBN-13 : 9780521770361
Rating : 4/5 (6X Downloads)

Synopsis Modular Forms and Galois Cohomology by : Haruzo Hida

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.

Local Representation Theory

Local Representation Theory
Author :
Publisher : Cambridge University Press
Total Pages : 198
Release :
ISBN-10 : 052144926X
ISBN-13 : 9780521449267
Rating : 4/5 (6X Downloads)

Synopsis Local Representation Theory by : J. L. Alperin

The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory
Author :
Publisher : Cambridge University Press
Total Pages : 339
Release :
ISBN-10 : 9781107162396
ISBN-13 : 1107162394
Rating : 4/5 (96 Downloads)

Synopsis A Course in Finite Group Representation Theory by : Peter Webb

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

Representations and Characters of Groups

Representations and Characters of Groups
Author :
Publisher : Cambridge University Press
Total Pages : 436
Release :
ISBN-10 : 9781139811057
ISBN-13 : 1139811053
Rating : 4/5 (57 Downloads)

Synopsis Representations and Characters of Groups by : Gordon James

This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.

Representations of SL2(Fq)

Representations of SL2(Fq)
Author :
Publisher : Springer Science & Business Media
Total Pages : 196
Release :
ISBN-10 : 9780857291578
ISBN-13 : 0857291572
Rating : 4/5 (78 Downloads)

Synopsis Representations of SL2(Fq) by : Cédric Bonnafé

Deligne-Lusztig theory aims to study representations of finite reductive groups by means of geometric methods, and particularly l-adic cohomology. Many excellent texts present, with different goals and perspectives, this theory in the general setting. This book focuses on the smallest non-trivial example, namely the group SL2(Fq), which not only provides the simplicity required for a complete description of the theory, but also the richness needed for illustrating the most delicate aspects. The development of Deligne-Lusztig theory was inspired by Drinfeld's example in 1974, and Representations of SL2(Fq) is based upon this example, and extends it to modular representation theory. To this end, the author makes use of fundamental results of l-adic cohomology. In order to efficiently use this machinery, a precise study of the geometric properties of the action of SL2(Fq) on the Drinfeld curve is conducted, with particular attention to the construction of quotients by various finite groups. At the end of the text, a succinct overview (without proof) of Deligne-Lusztig theory is given, as well as links to examples demonstrated in the text. With the provision of both a gentle introduction and several recent materials (for instance, Rouquier's theorem on derived equivalences of geometric nature), this book will be of use to graduate and postgraduate students, as well as researchers and lecturers with an interest in Deligne-Lusztig theory.