Recent Advances on Metric Fixed Point Theory

Recent Advances on Metric Fixed Point Theory
Author :
Publisher : Universidad de Sevilla
Total Pages : 184
Release :
ISBN-10 : 8447203506
ISBN-13 : 9788447203505
Rating : 4/5 (06 Downloads)

Synopsis Recent Advances on Metric Fixed Point Theory by : Tomás Domínguez Benavides

Topics in Metric Fixed Point Theory

Topics in Metric Fixed Point Theory
Author :
Publisher : Cambridge University Press
Total Pages : 258
Release :
ISBN-10 : 0521382890
ISBN-13 : 9780521382892
Rating : 4/5 (90 Downloads)

Synopsis Topics in Metric Fixed Point Theory by : Kazimierz Goebel

Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.

Recent Advances in Fixed Point Theory and Applications

Recent Advances in Fixed Point Theory and Applications
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1536120855
ISBN-13 : 9781536120851
Rating : 4/5 (55 Downloads)

Synopsis Recent Advances in Fixed Point Theory and Applications by : Umesh C. Gairola

Fixed point theory is a growing and exciting branch of mathematics with a variety of wide applications in biological and mathematical sciences, proposing newer applications in discrete dynamics and super fractals. The present endeavour is to report the latest trend in metric fixed point theory, emphasising newer applications in numerical analysis, discrete dynamics and fractal graphics, besides traditional applications. The book is useful to a large class of readers interested in analysis, applicable mathematics and fractal graphics. The articles have been selected carefully so that the book is useful for sophomores up to senior researchers looking for new material and new ideas in the existence of fixed points, new applications and survey articles. A few chapters included herein are formal in nature and suggest new directions of research in this area, which are especially useful to beginners in the field. The book is divided into two parts: Part I contains surveys and existence and convergence results. In Part II (Applications), various applications of fixed point theory to initial value problems, local attractivity of certain functional integral equation solutions, fractals and super-fractals, and solving equations in numerical praxis have been discussed. The present book, which is dedicated to Professor Shyam Lal Singh, consists of articles contributed by outstanding workers all over the world. Of course, some of the articles were selected from the Symposium on Fixed Point Theory and Applications (dedicated to him) held during the 19th Annual Conference Of India (10-12 November 2016), organised by Pauri Garhwal of the Department of Mathematics, H N B Garhwal (Central) University.

Advances in Metric Fixed Point Theory and Applications

Advances in Metric Fixed Point Theory and Applications
Author :
Publisher : Springer Nature
Total Pages : 503
Release :
ISBN-10 : 9789813366473
ISBN-13 : 9813366478
Rating : 4/5 (73 Downloads)

Synopsis Advances in Metric Fixed Point Theory and Applications by : Yeol Je Cho

This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.

Fixed Point Theory in Metric Spaces

Fixed Point Theory in Metric Spaces
Author :
Publisher : Springer
Total Pages : 173
Release :
ISBN-10 : 9789811329135
ISBN-13 : 9811329133
Rating : 4/5 (35 Downloads)

Synopsis Fixed Point Theory in Metric Spaces by : Praveen Agarwal

This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of α-ψ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky–Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.

Recent Advances and Applications of Fuzzy Metric Fixed Point Theory

Recent Advances and Applications of Fuzzy Metric Fixed Point Theory
Author :
Publisher : CRC Press
Total Pages : 215
Release :
ISBN-10 : 9781003812760
ISBN-13 : 1003812767
Rating : 4/5 (60 Downloads)

Synopsis Recent Advances and Applications of Fuzzy Metric Fixed Point Theory by : Dhananjay Gopal

This book not only presents essential material to understand fuzzy metric fixed point theory, but also enables the readers to appreciate the recent advancements made in this direction. It contains seven chapters on different topics in fuzzy metric fixed point theory. These chapters cover a good range of interesting topics such as con- vergence problems in fuzzy metrics, fixed figure problems, and applications of fuzzy metrics. The main focus is to unpack a number of diverse aspects of fuzzy metric fixed point theory and its applications in an understandable way so that it could help and motivate young graduates to explore new avenues of research to extend this flourishing area in different directions. The discussion on fixed figure problems and fuzzy contractive fixed point theorems and their different generalizations invites active researchers in this field to develop a new branch of fixed point theory. Features: Explore the latest research and developments in fuzzy metric fixed point theory. Describes applications of fuzzy metrics to colour image processing. Covers new topics on fuzzy fixed figure problems. Filled with examples and open problems. This book serves as a reference book for scientific investigators who want to analyze a simple and direct presentation of the fundamentals of the theory of fuzzy metric fixed point and its applications. It may also be used as a textbook for postgraduate and research students who try to derive future research scope in this area.

Fixed Point Theory and Its Applications to Real World Problems

Fixed Point Theory and Its Applications to Real World Problems
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1536193364
ISBN-13 : 9781536193367
Rating : 4/5 (64 Downloads)

Synopsis Fixed Point Theory and Its Applications to Real World Problems by : Anita Tomar

"Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--

An Introduction to Metric Spaces and Fixed Point Theory

An Introduction to Metric Spaces and Fixed Point Theory
Author :
Publisher : John Wiley & Sons
Total Pages : 318
Release :
ISBN-10 : 9781118031322
ISBN-13 : 1118031326
Rating : 4/5 (22 Downloads)

Synopsis An Introduction to Metric Spaces and Fixed Point Theory by : Mohamed A. Khamsi

Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.

Measures of Noncompactness in Metric Fixed Point Theory

Measures of Noncompactness in Metric Fixed Point Theory
Author :
Publisher : Birkhäuser
Total Pages : 222
Release :
ISBN-10 : 9783034889209
ISBN-13 : 3034889208
Rating : 4/5 (09 Downloads)

Synopsis Measures of Noncompactness in Metric Fixed Point Theory by : J.M. Ayerbe Toledano

What is clear and easy to grasp attracts us; complications deter David Hilbert The material presented in this volume is based on discussions conducted in peri odically held seminars by the Nonlinear Functional Analysis research group of the University of Seville. This book is mainly addressed to those working or aspiring to work in the field of measures of noncompactness and metric fixed point theory. Special em phasis is made on the results in metric fixed point theory which were derived from geometric coefficients defined by means of measures of noncompactness and on the relationships between nonlinear operators which are contractive for different measures. Several topics in these notes can be found either in texts on measures of noncompactness (see [AKPRSj, [BG]) or in books on metric fixed point theory (see [GK1], [Sm], [Z]). Many other topics have come from papers where the authors of this volume have published the results of their research over the last ten years. However, as in any work of this type, an effort has been made to revise many proofs and to place many others in a correct setting. Our research was made possible by partial support of the D.G.I.C.y'T. and the Junta de Andalucia.

Metric Fixed Point Theory

Metric Fixed Point Theory
Author :
Publisher : Springer Nature
Total Pages : 356
Release :
ISBN-10 : 9789811648960
ISBN-13 : 9811648964
Rating : 4/5 (60 Downloads)

Synopsis Metric Fixed Point Theory by : Pradip Debnath

This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.