Real Analysis With An Introduction To Wavelets And Applications
Download Real Analysis With An Introduction To Wavelets And Applications full books in PDF, epub, and Kindle. Read online free Real Analysis With An Introduction To Wavelets And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Don Hong |
Publisher |
: Elsevier |
Total Pages |
: 387 |
Release |
: 2004-12-31 |
ISBN-10 |
: 9780080540313 |
ISBN-13 |
: 0080540317 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Real Analysis with an Introduction to Wavelets and Applications by : Don Hong
Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis
Author |
: Charles K. Chui |
Publisher |
: Elsevier |
Total Pages |
: 281 |
Release |
: 2016-06-03 |
ISBN-10 |
: 9781483282862 |
ISBN-13 |
: 1483282864 |
Rating |
: 4/5 (62 Downloads) |
Synopsis An Introduction to Wavelets by : Charles K. Chui
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
Author |
: David F. Walnut |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 453 |
Release |
: 2013-12-11 |
ISBN-10 |
: 9781461200017 |
ISBN-13 |
: 1461200016 |
Rating |
: 4/5 (17 Downloads) |
Synopsis An Introduction to Wavelet Analysis by : David F. Walnut
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Author |
: John J. Benedetto |
Publisher |
: CRC Press |
Total Pages |
: 586 |
Release |
: 2021-07-28 |
ISBN-10 |
: 9781000443462 |
ISBN-13 |
: 1000443469 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Wavelets by : John J. Benedetto
Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.
Author |
: Lakshman Prasad |
Publisher |
: CRC Press |
Total Pages |
: 300 |
Release |
: 2020-01-29 |
ISBN-10 |
: 9781000721980 |
ISBN-13 |
: 1000721981 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Wavelet Analysis with Applications to Image Processing by : Lakshman Prasad
Wavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool. The first book on the topic for readers with minimal mathematical backgrounds, Wavelet Analysis with Applications to Image Processing provides a thorough introduction to wavelets with applications in image processing. Unlike most other works on this subject, which are often collections of papers or research advances, this book offers students and researchers without an extensive math background a step-by-step introduction to the power of wavelet transforms and applications to image processing. The first four chapters introduce the basic topics of analysis that are vital to understanding the mathematics of wavelet transforms. Subsequent chapters build on the information presented earlier to cover the major themes of wavelet analysis and its applications to image processing. This is an ideal introduction to the subject for students, and a valuable reference guide for professionals working in image processing.
Author |
: M.W. Frazier |
Publisher |
: Springer |
Total Pages |
: 517 |
Release |
: 2013-12-11 |
ISBN-10 |
: 9783642855702 |
ISBN-13 |
: 3642855709 |
Rating |
: 4/5 (02 Downloads) |
Synopsis An Introduction to Wavelets Through Linear Algebra by : M.W. Frazier
Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.
Author |
: David K. Ruch |
Publisher |
: John Wiley & Sons |
Total Pages |
: 502 |
Release |
: 2011-09-15 |
ISBN-10 |
: 9781118165669 |
ISBN-13 |
: 1118165667 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Wavelet Theory by : David K. Ruch
A self-contained, elementary introduction to wavelet theory and applications Exploring the growing relevance of wavelets in the field of mathematics, Wavelet Theory: An Elementary Approach with Applications provides an introduction to the topic, detailing the fundamental concepts and presenting its major impacts in the world beyond academia. Drawing on concepts from calculus and linear algebra, this book helps readers sharpen their mathematical proof writing and reading skills through interesting, real-world applications. The book begins with a brief introduction to the fundamentals of complex numbers and the space of square-integrable functions. Next, Fourier series and the Fourier transform are presented as tools for understanding wavelet analysis and the study of wavelets in the transform domain. Subsequent chapters provide a comprehensive treatment of various types of wavelets and their related concepts, such as Haar spaces, multiresolution analysis, Daubechies wavelets, and biorthogonal wavelets. In addition, the authors include two chapters that carefully detail the transition from wavelet theory to the discrete wavelet transformations. To illustrate the relevance of wavelet theory in the digital age, the book includes two in-depth sections on current applications: the FBI Wavelet Scalar Quantization Standard and image segmentation. In order to facilitate mastery of the content, the book features more than 400 exercises that range from theoretical to computational in nature and are structured in a multi-part format in order to assist readers with the correct proof or solution. These problems provide an opportunity for readers to further investigate various applications of wavelets. All problems are compatible with software packages and computer labs that are available on the book's related Web site, allowing readers to perform various imaging/audio tasks, explore computer wavelet transformations and their inverses, and visualize the applications discussed throughout the book. Requiring only a prerequisite knowledge of linear algebra and calculus, Wavelet Theory is an excellent book for courses in mathematics, engineering, and physics at the upper-undergraduate level. It is also a valuable resource for mathematicians, engineers, and scientists who wish to learn about wavelet theory on an elementary level.
Author |
: P. Wojtaszczyk |
Publisher |
: Cambridge University Press |
Total Pages |
: 280 |
Release |
: 1997-02-13 |
ISBN-10 |
: 0521578949 |
ISBN-13 |
: 9780521578943 |
Rating |
: 4/5 (49 Downloads) |
Synopsis A Mathematical Introduction to Wavelets by : P. Wojtaszczyk
The only introduction to wavelets that doesn't avoid the tough mathematical questions.
Author |
: Charles K. Chui |
Publisher |
: SIAM |
Total Pages |
: 228 |
Release |
: 1997-01-01 |
ISBN-10 |
: 0898719720 |
ISBN-13 |
: 9780898719727 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Wavelets by : Charles K. Chui
Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.
Author |
: Ramazan Gençay |
Publisher |
: Elsevier |
Total Pages |
: 383 |
Release |
: 2001-10-12 |
ISBN-10 |
: 9780080509228 |
ISBN-13 |
: 0080509223 |
Rating |
: 4/5 (28 Downloads) |
Synopsis An Introduction to Wavelets and Other Filtering Methods in Finance and Economics by : Ramazan Gençay
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods