Rapid Prototyping of Application Specific Signal Processors
Author | : Mark A. Richards |
Publisher | : Springer Science & Business Media |
Total Pages | : 206 |
Release | : 1997-02-28 |
ISBN-10 | : 0792398718 |
ISBN-13 | : 9780792398714 |
Rating | : 4/5 (18 Downloads) |
Rapid Prototyping of Application Specific Signal Processors presents leading-edge research that focuses on design methodology, infrastructure support and scalable architectures developed by the 150 million dollar DARPA United States Department of Defense RASSP Program. The contributions to this edited work include an introductory overview chapter that explains the origin, concepts and status of this effort. The RASSP Program is a multi-year DARPA/Tri-Service initiative intended to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are designed, manufactured, upgraded and supported. This program was originally driven by military applications for signal processing. The requirements of military applications for real-time signal processing are typically more demanding than those of commercial applications, but the time gap between technology employed in advanced military prototypes and commercial products is narrowing rapidly. The research on methodologies, infrastructure and architectures presented in this book is applicable to commercial signal processing systems that are in design now, or will be developed before the end of the decade. Rapid Prototyping of Application Specific Signal Processors is a valuable reference for developers of embedded digital systems, particularly systems engineers for signal processing systems (such as digital TV, biomedical image processing systems and telecommunications) and for military contractors who are developing signal processing systems. This book will also be of interest to managers who are charged with responsibility for creating and maintaining environments and infrastructures for developing large embedded digital systems. The chief value for managers will be the defining of methods and processes that reduce development time and cost.