R Companion For Sampling
Download R Companion For Sampling full books in PDF, epub, and Kindle. Read online free R Companion For Sampling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Yan Lu |
Publisher |
: CRC Press |
Total Pages |
: 222 |
Release |
: 2021-11-24 |
ISBN-10 |
: 9781000482058 |
ISBN-13 |
: 1000482057 |
Rating |
: 4/5 (58 Downloads) |
Synopsis R Companion for Sampling by : Yan Lu
The R Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use functions in base R and contributed packages to perform calculations for the examples in SDA. No prior experience with R is needed. Chapter 1 tells you how to obtain R and RStudio, introduces basic features of the R statistical software environment, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. R features and functions are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use R to select and analyze almost any type of probability sample. All R code and data sets used in this book are available online to help you develop your skills analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology.
Author |
: Sharon L. Lohr |
Publisher |
: CRC Press |
Total Pages |
: 247 |
Release |
: 2021-11-30 |
ISBN-10 |
: 9781000479713 |
ISBN-13 |
: 1000479714 |
Rating |
: 4/5 (13 Downloads) |
Synopsis SAS® Software Companion for Sampling by : Sharon L. Lohr
The SAS® Software Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use the survey selection and analysis procedures of SAS® software to perform calculations for the examples in SDA. No prior experience with SAS software is needed. Chapter 1 tells you how to access the software, introduces basic features, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. Features of the SAS software procedures are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use SAS software to select and analyze almost any type of probability sample. All code is available on the book website and is easily adapted for your own survey data analyses. The website also contains all data sets from the examples and exercises in SDA to help you develop your skills through analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology
Author |
: Sharon L. Lohr |
Publisher |
: CRC Press |
Total Pages |
: 611 |
Release |
: 2019-04-08 |
ISBN-10 |
: 9781000022087 |
ISBN-13 |
: 1000022080 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Sampling by : Sharon L. Lohr
This edition is a reprint of the second edition published by Cengage Learning, Inc. Reprinted with permission. What is the unemployment rate? How many adults have high blood pressure? What is the total area of land planted with soybeans? Sampling: Design and Analysis tells you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches sampling using real data sets from social sciences, public opinion research, medicine, public health, economics, agriculture, ecology, and other fields. The book is accessible to students from a wide range of statistical backgrounds. By appropriate choice of sections, it can be used for a graduate class for statistics students or for a class with students from business, sociology, psychology, or biology. Readers should be familiar with concepts from an introductory statistics class including linear regression; optional sections contain the statistical theory, for readers who have studied mathematical statistics. Distinctive features include: More than 450 exercises. In each chapter, Introductory Exercises develop skills, Working with Data Exercises give practice with data from surveys, Working with Theory Exercises allow students to investigate statistical properties of estimators, and Projects and Activities Exercises integrate concepts. A solutions manual is available. An emphasis on survey design. Coverage of simple random, stratified, and cluster sampling; ratio estimation; constructing survey weights; jackknife and bootstrap; nonresponse; chi-squared tests and regression analysis. Graphing data from surveys. Computer code using SAS® software. Online supplements containing data sets, computer programs, and additional material. Sharon Lohr, the author of Measuring Crime: Behind the Statistics, has published widely about survey sampling and statistical methods for education, public policy, law, and crime. She has been recognized as Fellow of the American Statistical Association, elected member of the International Statistical Institute, and recipient of the Gertrude M. Cox Statistics Award and the Deming Lecturer Award. Formerly Dean’s Distinguished Professor of Statistics at Arizona State University and a Vice President at Westat, she is now a freelance statistical consultant and writer. Visit her website at www.sharonlohr.com.
Author |
: Thomas Lumley |
Publisher |
: John Wiley & Sons |
Total Pages |
: 329 |
Release |
: 2011-09-20 |
ISBN-10 |
: 9781118210932 |
ISBN-13 |
: 111821093X |
Rating |
: 4/5 (32 Downloads) |
Synopsis Complex Surveys by : Thomas Lumley
A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.
Author |
: Daniel Navarro |
Publisher |
: Lulu.com |
Total Pages |
: 617 |
Release |
: 2013-01-13 |
ISBN-10 |
: 9781326189723 |
ISBN-13 |
: 1326189727 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Learning Statistics with R by : Daniel Navarro
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Author |
: Chelsea Myers |
Publisher |
: Chapman & Hall/CRC |
Total Pages |
: 169 |
Release |
: 2020-12-22 |
ISBN-10 |
: 0429292007 |
ISBN-13 |
: 9780429292002 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Project-Based R Companion to Introductory Statistics by : Chelsea Myers
Project-Based R Companion to Introductory Statistics is envisioned as a companion to a traditional statistics or biostatistics textbook, with each chapter covering traditional topics such as descriptive statistics, regression, and hypothesis testing. However, unlike a traditional textbook, each chapter will present its material using a complete step-by-step analysis of a real publicly available dataset, with an emphasis on the practical skills of testing assumptions, data exploration, and forming conclusions. The chapters in the main body of the book include a worked example showing the R code used at each step followed by a multi-part project for students to complete. These projects, which could serve as alternatives to traditional discrete homework problems, will illustrate how to "put the pieces together" and conduct a complete start-to-finish data analysis using the R statistical software package. At the end of the book, there are several projects that require the use of multiple statistical techniques that could be used as a take-home final exam or final project for a class. Key features of the text: Organized in chapters focusing on the same topics found in typical introductory statistics textbooks (descriptive statistics, regression, two-way tables, hypothesis testing for means and proportions, etc.) so instructors can easily pair this supplementary material with course plans Includes student projects for each chapter which can be assigned as laboratory exercises or homework assignments to supplement traditional homework Features real-world datasets from scientific publications in the fields of history, pop culture, business, medicine, and forensics for students to analyze Allows students to gain experience working through a variety of statistical analyses from start to finish The book is written at the undergraduate level to be used in an introductory statistical methods course or subject-specific research methods course such as biostatistics or research methods for psychology or business analytics. Author After a 10-year career as a research biostatistician in the Department of Ophthalmology and Visual Sciences at the University of Wisconsin-Madison, Chelsea Myers teaches statistics and biostatistics at Rollins College and Valencia College in Central Florida. She has authored or co-authored more than 30 scientific papers and presentations and is the creator of the MCAT preparation website MCATMath.com.
Author |
: Robert Stine |
Publisher |
: Pearson |
Total Pages |
: 867 |
Release |
: 2015-08-17 |
ISBN-10 |
: 9780134424453 |
ISBN-13 |
: 013442445X |
Rating |
: 4/5 (53 Downloads) |
Synopsis Statistics for Business by : Robert Stine
In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.
Author |
: Tilman M. Davies |
Publisher |
: No Starch Press |
Total Pages |
: 833 |
Release |
: 2016-07-16 |
ISBN-10 |
: 9781593276515 |
ISBN-13 |
: 1593276516 |
Rating |
: 4/5 (15 Downloads) |
Synopsis The Book of R by : Tilman M. Davies
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Author |
: Niall Bolger |
Publisher |
: Guilford Press |
Total Pages |
: 274 |
Release |
: 2013-01-22 |
ISBN-10 |
: 9781462506927 |
ISBN-13 |
: 1462506925 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Intensive Longitudinal Methods by : Niall Bolger
This book offers a complete, practical guide to doing an intensive longitudinal study with individuals, dyads, or groups. It provides the tools for studying social, psychological, and physiological processes in everyday contexts, using methods such as diary and experience sampling. A range of engaging, worked-through research examples with datasets are featured. Coverage includes how to: select the best intensive longitudinal design for a particular research question, apply multilevel models to within-subject designs, model within-subject change processes for continuous and categorical outcomes, assess the reliability of within-subject changes, assure sufficient statistical power, and more. Several end-of-chapter write-ups illustrate effective ways to present study findings for publication. Datasets and output in SPSS, SAS, Mplus, HLM, MLwiN, and R for the examples are available on the companion website (www.intensivelongitudinal.com).
Author |
: Christian Kleiber |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 229 |
Release |
: 2008-12-10 |
ISBN-10 |
: 9780387773186 |
ISBN-13 |
: 0387773185 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Applied Econometrics with R by : Christian Kleiber
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.