Quantum Many Body Physics
Download Quantum Many Body Physics full books in PDF, epub, and Kindle. Read online free Quantum Many Body Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Piers Coleman |
Publisher |
: Cambridge University Press |
Total Pages |
: 815 |
Release |
: 2015-11-26 |
ISBN-10 |
: 9781316432020 |
ISBN-13 |
: 1316432025 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Introduction to Many-Body Physics by : Piers Coleman
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Author |
: Henrik Bruus |
Publisher |
: Oxford University Press |
Total Pages |
: 458 |
Release |
: 2004-09-02 |
ISBN-10 |
: 9780198566335 |
ISBN-13 |
: 0198566336 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Many-Body Quantum Theory in Condensed Matter Physics by : Henrik Bruus
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Author |
: Edward Shuryak |
Publisher |
: Princeton University Press |
Total Pages |
: 306 |
Release |
: 2018-11-27 |
ISBN-10 |
: 9780691175607 |
ISBN-13 |
: 0691175608 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Quantum Many-Body Physics in a Nutshell by : Edward Shuryak
The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields—phenomena as well as theoretical tools—and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum
Author |
: Xiao-Gang Wen |
Publisher |
: OUP Oxford |
Total Pages |
: 520 |
Release |
: 2004-06-04 |
ISBN-10 |
: 9780191523960 |
ISBN-13 |
: 0191523968 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Quantum Field Theory of Many-Body Systems by : Xiao-Gang Wen
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.
Author |
: Willem Hendrik Dickhoff |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 851 |
Release |
: 2008-05-02 |
ISBN-10 |
: 9789813101319 |
ISBN-13 |
: 9813101318 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition) by : Willem Hendrik Dickhoff
This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.
Author |
: Hal Tasaki |
Publisher |
: Springer Nature |
Total Pages |
: 534 |
Release |
: 2020-05-07 |
ISBN-10 |
: 9783030412654 |
ISBN-13 |
: 3030412652 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Physics and Mathematics of Quantum Many-Body Systems by : Hal Tasaki
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
Author |
: Yoshio Kuramoto |
Publisher |
: Springer |
Total Pages |
: 261 |
Release |
: 2020-02-05 |
ISBN-10 |
: 4431553924 |
ISBN-13 |
: 9784431553922 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Quantum Many-Body Physics by : Yoshio Kuramoto
This book offers a compact tutorial on basic concepts and tools in quantum many-body physics, and focuses on the correlation effects produced by mutual interactions. The content is divided into three parts, the first of which introduces readers to perturbation theory. It begins with the simplest examples—hydrogen and oxygen molecules—based on their effective Hamiltonians, and looks into basic properties of electrons in solids from the perspective of localized and itinerant limits. Readers will also learn about basic theoretical methods such as the linear response theory and Green functions. The second part focuses on mean-field theory for itinerant electrons, e.g. the Fermi liquid theory and superconductivity. Coulomb repulsion among electrons is addressed in the context of high-Tc superconductivity in cuprates and iron pnictides. A recent discovery concerning hydride superconductors is also briefly reviewed. In turn, the third part highlights quantum fluctuation effects beyond the mean-field picture. Discussing the dramatic renormalization effect in the Kondo physics, it provides a clear understanding of nonperturbative interaction effects. Further it introduces readers to fractionally charged quasi-particles in one and two dimensions. The last chapter addresses the dynamical mean field theory (DMFT). The book is based on the author’s long years of experience as a lecturer and researcher. It also includes reviews of recent focus topics in condensed matter physics, enabling readers to not only grasp conventional condensed matter theories but also to catch up on the latest developments in the field.
Author |
: Gianluca Stefanucci |
Publisher |
: Cambridge University Press |
Total Pages |
: 619 |
Release |
: 2013-03-07 |
ISBN-10 |
: 9781107354579 |
ISBN-13 |
: 1107354579 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Nonequilibrium Many-Body Theory of Quantum Systems by : Gianluca Stefanucci
The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.
Author |
: Norman Henry March |
Publisher |
: Courier Corporation |
Total Pages |
: 482 |
Release |
: 1995-01-01 |
ISBN-10 |
: 9780486687544 |
ISBN-13 |
: 0486687546 |
Rating |
: 4/5 (44 Downloads) |
Synopsis The Many-Body Problem in Quantum Mechanics by : Norman Henry March
Single-volume account of methods used in dealing with the many-body problem and the resulting physics. Single-particle approximations, second quantization, many-body perturbation theory, Fermi fluids, superconductivity, many-boson systems, more. Each chapter contains well-chosen problems. Only prerequisite is basic understanding of elementary quantum mechanics. 1967 edition.
Author |
: Yuto Ashida |
Publisher |
: Springer Nature |
Total Pages |
: 243 |
Release |
: 2020-01-06 |
ISBN-10 |
: 9789811525803 |
ISBN-13 |
: 9811525803 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations by : Yuto Ashida
This book studies the fundamental aspects of many-body physics in quantum systems open to an external world. Recent remarkable developments in the observation and manipulation of quantum matter at the single-quantum level point to a new research area of open many-body systems, where interactions with an external observer and the environment play a major role. The first part of the book elucidates the influence of measurement backaction from an external observer, revealing new types of quantum critical phenomena and out-of-equilibrium dynamics beyond the conventional paradigm of closed systems. In turn, the second part develops a powerful theoretical approach to study the in- and out-of-equilibrium physics of an open quantum system strongly correlated with an external environment, where the entanglement between the system and the environment plays an essential role. The results obtained here offer essential theoretical results for understanding the many-body physics of quantum systems open to an external world, and can be applied to experimental systems in atomic, molecular and optical physics, quantum information science and condensed matter physics.