Quantifying Morphology And Physiology Of The Human Body Using Mri
Download Quantifying Morphology And Physiology Of The Human Body Using Mri full books in PDF, epub, and Kindle. Read online free Quantifying Morphology And Physiology Of The Human Body Using Mri ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: L. Tugan Muftuler |
Publisher |
: CRC Press |
Total Pages |
: 529 |
Release |
: 2013-05-02 |
ISBN-10 |
: 9781439852651 |
ISBN-13 |
: 1439852650 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Quantifying Morphology and Physiology of the Human Body Using MRI by : L. Tugan Muftuler
In the medical imaging field, clinicians and researchers are increasingly moving from the qualitative assessment of printed images to the quantitative evaluation of digital images since the quantitative techniques often improve diagnostic accuracy and complement clinical assessments by providing objective criteria. Despite this growing interest, the field lacks a comprehensive body of knowledge. Filling the need for a complete manual on these novel techniques, Quantifying Morphology and Physiology of the Human Body Using MRI presents a wide range of quantitative MRI techniques to study the morphology and physiology of the whole body, from the brain to musculoskeletal systems. Illustrating the growing importance of quantitative MRI, the book delivers an indispensable reference for readers who would like to explore in vivo MRI techniques to quantify changes in the morphology and physiology of tissues caused by various disease mechanisms. With internationally renowned experts sharing their insight on the latest developments, the book goes beyond conventional MRI contrast mechanisms to include new techniques that measure electromagnetic and mechanical properties of tissues. Each chapter offers comprehensive information on data acquisition, processing, and analysis techniques as well as clinical applications. The text organizes the techniques based on their primary use either in the brain or the body. Some of the techniques, such as diffusion-weighted imaging and diffusion tensor imaging, span several application areas, including brain imaging, cancer imaging, and musculoskeletal imaging. The book also covers up-and-coming quantitative techniques that explore tissue properties other than the presence of protons (or other MRI-observable nuclei) and their interactions with their environment. These novel techniques provide unique information about the electromagnetic and mechanical properties of tissues and introduce new frontiers of study into disease mechanisms.
Author |
: Nicole Seiberlich |
Publisher |
: Academic Press |
Total Pages |
: 1094 |
Release |
: 2020-11-18 |
ISBN-10 |
: 9780128170588 |
ISBN-13 |
: 0128170581 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Quantitative Magnetic Resonance Imaging by : Nicole Seiberlich
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Author |
: John G. Webster |
Publisher |
: CRC Press |
Total Pages |
: 608 |
Release |
: 2014-12-11 |
ISBN-10 |
: 9781439808481 |
ISBN-13 |
: 1439808481 |
Rating |
: 4/5 (81 Downloads) |
Synopsis The Physiological Measurement Handbook by : John G. Webster
The Physiological Measurement Handbook presents an extensive range of topics that encompass the subject of measurement in all departments of medicine. The handbook describes the use of instruments and techniques for practical measurements required in medicine. It covers sensors, techniques, hardware, and software as well as information on processin
Author |
: Mara Cercignani |
Publisher |
: CRC Press |
Total Pages |
: 342 |
Release |
: 2018-01-12 |
ISBN-10 |
: 9781315363561 |
ISBN-13 |
: 1315363569 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Quantitative MRI of the Brain by : Mara Cercignani
Building on the success of the first edition of this book, the winner of the 2004 British Medical Association Radiology Medical Book Competition, Quantitative MRI of the Brain: Principles of Physical Measurement gives a unique view on how to use an MRI machine in a new way. Used as a scientific instrument it can make measurements of a myriad of physical and biological quantities in the human brain and body. For each small tissue voxel, non-invasive information monitors how tissue changes with disease and responds to treatment. The book opens with a detailed exposition of the principles of good practice in quantification, including fundamental concepts, quality assurance, MR data collection and analysis and improved study statistical power through minimised instrumental variation. There follow chapters on 14 specific groups of quantities: proton density, T1, T2, T2*, diffusion, advanced diffusion, magnetisation transfer, CEST, 1H and multi-nuclear spectroscopy, DCE-MRI, quantitative fMRI, arterial spin-labelling and image analysis, and finally a chapter on the future of quantification. The physical principles behind each quantity are stated, followed by its biological significance. Practical techniques for measurement are given, along with pitfalls and examples of clinical applications. This second edition of this indispensable 'how to' manual of quantitative MR shows the MRI physicist and research clinician how to implement these techniques on an MRI scanner to understand more about the biological processes in the patient and physiological changes in healthy controls. Although focussed on the brain, most techniques are applicable to characterising tissue in the whole body. This book is essential reading for anyone who wants to use the gamut of modern quantitative MRI methods to measure the effects of disease, its progression, and its response to treatment. Features: The first edition was awarded the book prize for Radiology by the British Medical Association in 2004 Written by an authority in the field: Professor Tofts has an international reputation for quantification in MRI Gives specific ‘how to’ information for implementation of MRI measurement sequence techniques
Author |
: Shirley Lehnert |
Publisher |
: CRC Press |
Total Pages |
: 552 |
Release |
: 2014-12-08 |
ISBN-10 |
: 9781439829028 |
ISBN-13 |
: 1439829020 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Radiosensitizers and Radiochemotherapy in the Treatment of Cancer by : Shirley Lehnert
Radiosensitizers and Radiochemotherapy in the Treatment of Cancer catalogs and describes the mechanism of action for entities characterized as radiosensitizers. Developments in the biological and physical sciences have introduced new radiosensitizers and defined novel targets for radiosensitization. As a result, a book about radiosensitization must now address a huge range of topics, covering everything from molecular oxygen and high Z elements to monoclonal antibodies and complex phytochemicals. At the molecular level, the understanding of the molecular consequences of DNA damage and the DNA damage response have informed the development of targeted radiosensitizers and shed light on the mode of action of radiochemotherapy protocols of known clinical efficacy. In this book the mechanisms of action at the molecular and cellular level are described for documented radiosensitizers including, where applicable, a brief history of their clinical use and most recent clinical results. In addition, the clinical context is addressed including the importance of factors such as dose and dose rate, normal tissue toxicity, and drug delivery. Intuitively organized by topic and application, the book includes extensive illustrations, end-of-chapter summaries, and a wealth of references.
Author |
: Harald Paganetti |
Publisher |
: CRC Press |
Total Pages |
: 772 |
Release |
: 2018-11-19 |
ISBN-10 |
: 9781351855754 |
ISBN-13 |
: 1351855751 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Proton Therapy Physics, Second Edition by : Harald Paganetti
Expanding on the highly successful first edition, this second edition of Proton Therapy Physics has been completely restructured and updated throughout, and includes several new chapters. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, this book provides an in-depth overview of the physics of this radiation therapy modality, eliminating the need to dig through information scattered across medical physics literature. After tracing the history of proton therapy, the book explores the atomic and nuclear physics background necessary for understanding proton interactions with tissue. The text then covers dosimetry, including beam delivery, shielding aspects, computer simulations, detector systems and measuring techniques for reference dosimetry. Important for daily operations, acceptance testing, commissioning, quality assurance and monitor unit calibrations are outlined. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. Imaging for treatment guidance as well as treatment monitoring is outlined. Finally, the biological implications of using protons from a physics perspective are discussed. This book is an ideal practical guide for physicians, dosimetrists, radiation therapists, and physicists who already have some experience in radiation oncology. It is also an invaluable reference for graduate students in medical physics programs, physicians in their last year of medical school or residency, and those considering a career in medical physics. Features: Updated with the latest technologies and methods in the field, covering all delivery methods of proton therapy, including beam scanning and passive scattering Discusses clinical aspects, such as treatment planning and quality assurance Offers insight on the past, present, and future of proton therapy from a physics perspective
Author |
: Arkadiusz Sitek |
Publisher |
: CRC Press |
Total Pages |
: 264 |
Release |
: 2014-12-17 |
ISBN-10 |
: 9781498729307 |
ISBN-13 |
: 1498729304 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Statistical Computing in Nuclear Imaging by : Arkadiusz Sitek
This book is highly focused on computational aspects of Bayesian data analysis of photon-limited data acquired in tomographic measurements in nuclear imaging. Basic Bayesian statistical concepts, elements of Bayesian decision theory, and counting statistics are discussed in the first chapters. Monte Carlo methods and Markov chains in posterior analysis are discussed next along with an introduction to nuclear imaging and applications. The final chapter includes illustrative examples of statistical computing based on Poisson-multinomial statistics. Examples include calculation of Bayes factors and risks, and Bayesian decision making and hypothesis testing.
Author |
: Richard J. Vetter |
Publisher |
: CRC Press |
Total Pages |
: 511 |
Release |
: 2016-01-05 |
ISBN-10 |
: 9781482245387 |
ISBN-13 |
: 1482245388 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Radiation Protection in Medical Imaging and Radiation Oncology by : Richard J. Vetter
Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require ve
Author |
: Xun Jia |
Publisher |
: CRC Press |
Total Pages |
: 286 |
Release |
: 2018-09-21 |
ISBN-10 |
: 9781351231664 |
ISBN-13 |
: 1351231669 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Graphics Processing Unit-Based High Performance Computing in Radiation Therapy by : Xun Jia
Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.
Author |
: William Y. Song |
Publisher |
: CRC Press |
Total Pages |
: 416 |
Release |
: 2017-05-19 |
ISBN-10 |
: 9781498736541 |
ISBN-13 |
: 1498736548 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Emerging Technologies in Brachytherapy by : William Y. Song
Brachytherapy is continuously advancing. Years of accumulated experience have led to clinical evidence of its benefit in numerous clinical sites such as gynecological, prostate, breast, rectum, ocular, and many other cancers. Brachytherapy continues to expand in its scope of practice and complexity, driven by strong academic and commercial research, by advances in competing modalities, and due to the diversity in the political and economic landscape. It is a true challenge for practicing professionals and students to readily grasp the overarching trends of the field, especially of those technologies and innovative practices that are not yet established but are certainly on the rise. Addressing this challenge, Emerging Technologies in Brachytherapy presents a comprehensive collection of chapters on the latest trending/emerging technologies and expert opinions. It is divided into five broad sections: Section I: Physics of Brachytherapy Section II: Imaging for Brachytherapy Guidance Section III: Brachytherapy Suites Section IV: Is Brachytherapy a Competitive Modality? Section V: Vision 20/20: Industry Perspective Each section has a carefully selected collection of chapters, which covers the spectrum of topics in comprehensive detail. By drawing on recognized experts and key opinion leaders from academia and commercial sectors worldwide (100+ contributors), Emerging Technologies in Brachytherapy provides readers with a wealth of relevant information needed to comprehend the rapidly advancing technologies and trends of today and the prospects for the future.