Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 309
Release :
ISBN-10 : 9783540329022
ISBN-13 : 3540329021
Rating : 4/5 (22 Downloads)

Synopsis Qualitative Theory of Planar Differential Systems by : Freddy Dumortier

This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations
Author :
Publisher : American Mathematical Soc.
Total Pages : 480
Release :
ISBN-10 : 9780821841839
ISBN-13 : 0821841831
Rating : 4/5 (39 Downloads)

Synopsis Qualitative Theory of Differential Equations by : Zhifen Zhang

Subriemannian geometries, also known as Carnot-Caratheodory geometries, can be viewed as limits of Riemannian geometries. They also arise in physical phenomenon involving ``geometric phases'' or holonomy. Very roughly speaking, a subriemannian geometry consists of a manifold endowed with a distribution (meaning a $k$-plane field, or subbundle of the tangent bundle), called horizontal together with an inner product on that distribution. If $k=n$, the dimension of the manifold, we get the usual Riemannian geometry. Given a subriemannian geometry, we can define the distance between two points just as in the Riemannian case, except we are only allowed to travel along the horizontal lines between two points. The book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book the author mentions an elementary exposition of Gromov's surprising idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants (diffeomorphism types) of distributions. There is also a chapter devoted to open problems. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail the following four physical problems: Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry: that of a principal bundle endowed with $G$-invariant metrics. Reading the book requires introductory knowledge of differential geometry, and it can serve as a good introduction to this new, exciting area of mathematics. This book provides an introduction to and a comprehensive study of the qualitative theory of ordinary differential equations. It begins with fundamental theorems on existence, uniqueness, and initial conditions, and discusses basic principles in dynamical systems and Poincare-Bendixson theory. The authors present a careful analysis of solutions near critical points of linear and nonlinear planar systems and discuss indices of planar critical points. A very thorough study of limit cycles is given, including many results on quadratic systems and recent developments in China. Other topics included are: the critical point at infinity, harmonic solutions for periodic differential equations, systems of ordinary differential equations on the torus, and structural stability for systems on two-dimensional manifolds. This books is accessible to graduate students and advanced undergraduates and is also of interest to researchers in this area. Exercises are included at the end of each chapter.

Planar Dynamical Systems

Planar Dynamical Systems
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 464
Release :
ISBN-10 : 9783110389142
ISBN-13 : 3110389142
Rating : 4/5 (42 Downloads)

Synopsis Planar Dynamical Systems by : Yirong Liu

In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.

Introduction to the Qualitative Theory of Differential Systems

Introduction to the Qualitative Theory of Differential Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 300
Release :
ISBN-10 : 9783034806572
ISBN-13 : 3034806574
Rating : 4/5 (72 Downloads)

Synopsis Introduction to the Qualitative Theory of Differential Systems by : Jaume Llibre

The book deals with continuous piecewise linear differential systems in the plane with three pieces separated by a pair of parallel straight lines. Moreover, these differential systems are symmetric with respect to the origin of coordinates. This class of systems driven by concrete applications is of interest in engineering, in particular in control theory and the design of electric circuits. By studying these particular differential systems we will introduce the basic tools of the qualitative theory of ordinary differential equations, which allow us to describe the global dynamics of these systems including the infinity. The behavior of their solutions, their parametric stability or instability and their bifurcations are described. The book is very appropriate for a first course in the qualitative theory of differential equations or dynamical systems, mainly for engineers, mathematicians, and physicists.

A First Course in the Qualitative Theory of Differential Equations

A First Course in the Qualitative Theory of Differential Equations
Author :
Publisher :
Total Pages : 584
Release :
ISBN-10 : UVA:X004817207
ISBN-13 :
Rating : 4/5 (07 Downloads)

Synopsis A First Course in the Qualitative Theory of Differential Equations by : James Hetao Liu

This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Author :
Publisher : American Mathematical Society
Total Pages : 370
Release :
ISBN-10 : 9781470476410
ISBN-13 : 147047641X
Rating : 4/5 (10 Downloads)

Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Differential Equations and Dynamical Systems

Differential Equations and Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 530
Release :
ISBN-10 : 9781468402490
ISBN-13 : 1468402498
Rating : 4/5 (90 Downloads)

Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.

Equadiff-91 - International Conference On Differential Equations (In 2 Volumes)

Equadiff-91 - International Conference On Differential Equations (In 2 Volumes)
Author :
Publisher : World Scientific
Total Pages : 1036
Release :
ISBN-10 : 9789814554718
ISBN-13 : 9814554715
Rating : 4/5 (18 Downloads)

Synopsis Equadiff-91 - International Conference On Differential Equations (In 2 Volumes) by : C Perello

Equadiff-91 stems from the series of conferences initiated by the late Professor Vogel. The first conference Equadiff-70 which was held in Marseille. Since then, similar conferences had been held in Brussels, Florence, Wurzburg as well as Xanthi. The purpose of the Equadiff series of conferences is to present the latest development in the field of differential equations, both ordinary and partial, including their numerical treatment and applications to the mathematics community. These conferences had attracted renowned mathematicians from all over the world to present their studies and findings. The latest conference under the series was Equadiff-91, held in Barcelona. It attracted some 30 renowned mathematicians. Researchers and graduate students of pure and applied mathematics will find this compilation of conference proceedings up-to-date, relevant and insightful.

Geometric Configurations of Singularities of Planar Polynomial Differential Systems

Geometric Configurations of Singularities of Planar Polynomial Differential Systems
Author :
Publisher : Springer Nature
Total Pages : 699
Release :
ISBN-10 : 9783030505707
ISBN-13 : 3030505707
Rating : 4/5 (07 Downloads)

Synopsis Geometric Configurations of Singularities of Planar Polynomial Differential Systems by : Joan C. Artés

This book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors’ results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows.

An Introduction to Ordinary Differential Equations

An Introduction to Ordinary Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 333
Release :
ISBN-10 : 9780387712765
ISBN-13 : 0387712763
Rating : 4/5 (65 Downloads)

Synopsis An Introduction to Ordinary Differential Equations by : Ravi P. Agarwal

Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an "answers and hints" section, are included. The book further provides a background and history of the subject.