Qualitative Estimates For Partial Differential Equations

Qualitative Estimates For Partial Differential Equations
Author :
Publisher : CRC Press
Total Pages : 390
Release :
ISBN-10 : 9781000142372
ISBN-13 : 100014237X
Rating : 4/5 (72 Downloads)

Synopsis Qualitative Estimates For Partial Differential Equations by : J N Flavin

Qualitative Estimates For Partial Differential Equations: An Introduction describes an approach to the use of partial differential equations (PDEs) arising in the modelling of physical phenomena. It treats a wide range of differential inequality techniques applicable to problems arising in engineering and the natural sciences, including fluid and solid mechanics, physics, dynamics, biology, and chemistry. The book begins with an elementary discussion of the fundamental principles of differential inequality techniques for PDEs arising in the solution of physical problems, and then shows how these are used in research. Qualitative Estimates For Partial Differential Equations: An Introduction is an ideal book for students, professors, lecturers, and researchers who need a comprehensive introduction to qualitative methods for PDEs arising in engineering and the natural sciences.

Methods for Partial Differential Equations

Methods for Partial Differential Equations
Author :
Publisher : Birkhäuser
Total Pages : 473
Release :
ISBN-10 : 9783319664569
ISBN-13 : 3319664565
Rating : 4/5 (69 Downloads)

Synopsis Methods for Partial Differential Equations by : Marcelo R. Ebert

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Partial Differential Equations

Partial Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 467
Release :
ISBN-10 : 9780470054567
ISBN-13 : 0470054565
Rating : 4/5 (67 Downloads)

Synopsis Partial Differential Equations by : Walter A. Strauss

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Qualitative Estimates for Partial Differential Equations

Qualitative Estimates for Partial Differential Equations
Author :
Publisher : CRC Press
Total Pages : 400
Release :
ISBN-10 : 0367448793
ISBN-13 : 9780367448790
Rating : 4/5 (93 Downloads)

Synopsis Qualitative Estimates for Partial Differential Equations by : J N Flavin

Qualitative Estimates For Partial Differential Equations: An Introduction describes an approach to the use of partial differential equations (PDEs) arising in the modelling of physical phenomena. It treats a wide range of differential inequality techniques applicable to problems arising in engineering and the natural sciences, including fluid and solid mechanics, physics, dynamics, biology, and chemistry. The book begins with an elementary discussion of the fundamental principles of differential inequality techniques for PDEs arising in the solution of physical problems, and then shows how these are used in research. Qualitative Estimates For Partial Differential Equations: An Introduction is an ideal book for students, professors, lecturers, and researchers who need a comprehensive introduction to qualitative methods for PDEs arising in engineering and the natural sciences.

Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 506
Release :
ISBN-10 : 9781118111116
ISBN-13 : 1118111117
Rating : 4/5 (16 Downloads)

Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Continuum Mechanics and Applications in Geophysics and the Environment

Continuum Mechanics and Applications in Geophysics and the Environment
Author :
Publisher : Springer Science & Business Media
Total Pages : 402
Release :
ISBN-10 : 9783662044391
ISBN-13 : 3662044390
Rating : 4/5 (91 Downloads)

Synopsis Continuum Mechanics and Applications in Geophysics and the Environment by : Brian Straughan

The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.

Theory of Stability of Continuous Elastic Structures

Theory of Stability of Continuous Elastic Structures
Author :
Publisher : Routledge
Total Pages : 272
Release :
ISBN-10 : 9781351408530
ISBN-13 : 1351408534
Rating : 4/5 (30 Downloads)

Synopsis Theory of Stability of Continuous Elastic Structures by : Mario Como

Theory of Stability of Continuous Elastic Structures presents an applied mathematical treatment of the stability of civil engineering structures. The book's modern and rigorous approach makes it especially useful as a text in advanced engineering courses and an invaluable reference for engineers.

Stability Criteria for Fluid Flows

Stability Criteria for Fluid Flows
Author :
Publisher : World Scientific
Total Pages : 418
Release :
ISBN-10 : 9789814289573
ISBN-13 : 9814289574
Rating : 4/5 (73 Downloads)

Synopsis Stability Criteria for Fluid Flows by : Adelina Georgescu

1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost.

Stability Criteria For Fluid Flows

Stability Criteria For Fluid Flows
Author :
Publisher : World Scientific
Total Pages : 418
Release :
ISBN-10 : 9789814466363
ISBN-13 : 9814466360
Rating : 4/5 (63 Downloads)

Synopsis Stability Criteria For Fluid Flows by : Lidia Palese

This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them.