Asymptotic Methods for Relaxation Oscillations and Applications

Asymptotic Methods for Relaxation Oscillations and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 229
Release :
ISBN-10 : 9781461210566
ISBN-13 : 1461210569
Rating : 4/5 (66 Downloads)

Synopsis Asymptotic Methods for Relaxation Oscillations and Applications by : Johan Grasman

In various fields of science, notably in physics and biology, one is con fronted with periodic phenomena having a remarkable temporal structure: it is as if certain systems are periodically reset in an initial state. A paper of Van der Pol in the Philosophical Magazine of 1926 started up the investigation of this highly nonlinear type of oscillation for which Van der Pol coined the name "relaxation oscillation". The study of relaxation oscillations requires a mathematical analysis which differs strongly from the well-known theory of almost linear oscillations. In this monograph the method of matched asymptotic expansions is employed to approximate the periodic orbit of a relaxation oscillator. As an introduction, in chapter 2 the asymptotic analysis of Van der Pol's equation is carried out in all detail. The problem exhibits all features characteristic for a relaxation oscillation. From this case study one may learn how to handle other or more generally formulated relaxation oscillations. In the survey special attention is given to biological and chemical relaxation oscillators. In chapter 2 a general definition of a relaxation oscillation is formulated.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 475
Release :
ISBN-10 : 9781461211402
ISBN-13 : 1461211409
Rating : 4/5 (02 Downloads)

Synopsis Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by : John Guckenheimer

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Multiple Time Scale Dynamics

Multiple Time Scale Dynamics
Author :
Publisher : Springer
Total Pages : 816
Release :
ISBN-10 : 9783319123165
ISBN-13 : 3319123165
Rating : 4/5 (65 Downloads)

Synopsis Multiple Time Scale Dynamics by : Christian Kuehn

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Author :
Publisher :
Total Pages : 750
Release :
ISBN-10 : UIUC:30112075601564
ISBN-13 :
Rating : 4/5 (64 Downloads)

Synopsis Scientific and Technical Aerospace Reports by :

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Periodic Differential Equations in the Plane

Periodic Differential Equations in the Plane
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 200
Release :
ISBN-10 : 9783110551167
ISBN-13 : 3110551160
Rating : 4/5 (67 Downloads)

Synopsis Periodic Differential Equations in the Plane by : Rafael Ortega

Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincaré–Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.

Periodic Motions

Periodic Motions
Author :
Publisher : Springer Science & Business Media
Total Pages : 585
Release :
ISBN-10 : 9781475742114
ISBN-13 : 1475742118
Rating : 4/5 (14 Downloads)

Synopsis Periodic Motions by : Miklos Farkas

A summary of the most important results in the existence and stability of periodic solutions for ordinary differential equations achieved in the twentieth century, along with relevant applications. It differs from standard classical texts on non-linear oscillations in that it also contains linear theory; theorems are proved with mathematical rigor; and, besides the classical applications such as Van der Pol's, Linard's and Duffing's equations, most applications come from biomathematics. For graduate and Ph.D students in mathematics, physics, engineering, and biology, and as a standard reference for use by researchers in the field of dynamical systems and their applications.

Recent Trends in Dynamical Systems

Recent Trends in Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 628
Release :
ISBN-10 : 9783034804516
ISBN-13 : 3034804512
Rating : 4/5 (16 Downloads)

Synopsis Recent Trends in Dynamical Systems by : Andreas Johann

This book presents the proceedings of a conference on dynamical systems held in honor of Jürgen Scheurle in January 2012. Through both original research papers and survey articles leading experts in the field offer overviews of the current state of the theory and its applications to mechanics and physics. In particular, the following aspects of the theory of dynamical systems are covered: - Stability and bifurcation - Geometric mechanics and control theory - Invariant manifolds, attractors and chaos - Fluid mechanics and elasticity - Perturbations and multiscale problems - Hamiltonian dynamics and KAM theory Researchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author :
Publisher : CRC Press
Total Pages : 370
Release :
ISBN-10 : 9781420033830
ISBN-13 : 1420033832
Rating : 4/5 (30 Downloads)

Synopsis Nonlinear Dynamics and Chaos by : J Hogan

Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys