Pseudo Monotone Operator Theory For Unsteady Problems With Variable Exponents
Download Pseudo Monotone Operator Theory For Unsteady Problems With Variable Exponents full books in PDF, epub, and Kindle. Read online free Pseudo Monotone Operator Theory For Unsteady Problems With Variable Exponents ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alex Kaltenbach |
Publisher |
: Springer Nature |
Total Pages |
: 364 |
Release |
: 2023-09-12 |
ISBN-10 |
: 9783031296703 |
ISBN-13 |
: 3031296702 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents by : Alex Kaltenbach
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory and non-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
Author |
: Lars Diening |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 516 |
Release |
: 2011-03-31 |
ISBN-10 |
: 9783642183621 |
ISBN-13 |
: 364218362X |
Rating |
: 4/5 (21 Downloads) |
Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Author |
: Nikolaos S. Papageorgiou |
Publisher |
: Springer |
Total Pages |
: 586 |
Release |
: 2019-02-26 |
ISBN-10 |
: 9783030034306 |
ISBN-13 |
: 3030034305 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Nonlinear Analysis - Theory and Methods by : Nikolaos S. Papageorgiou
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Author |
: Panagiotis D. Panagiotopoulos |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 453 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642516771 |
ISBN-13 |
: 3642516777 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Hemivariational Inequalities by : Panagiotis D. Panagiotopoulos
The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.
Author |
: Lars Diening |
Publisher |
: Springer |
Total Pages |
: 516 |
Release |
: 2011-03-29 |
ISBN-10 |
: 9783642183638 |
ISBN-13 |
: 3642183638 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Author |
: Kai Diethelm |
Publisher |
: Springer |
Total Pages |
: 251 |
Release |
: 2010-08-18 |
ISBN-10 |
: 9783642145742 |
ISBN-13 |
: 3642145744 |
Rating |
: 4/5 (42 Downloads) |
Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Author |
: Jean Mawhin |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 292 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9781475720617 |
ISBN-13 |
: 1475720610 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Critical Point Theory and Hamiltonian Systems by : Jean Mawhin
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
Author |
: Titus Petrila |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 513 |
Release |
: 2006-06-14 |
ISBN-10 |
: 9780387238388 |
ISBN-13 |
: 0387238387 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics by : Titus Petrila
The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.
Author |
: Rainer Klages |
Publisher |
: John Wiley & Sons |
Total Pages |
: 614 |
Release |
: 2008-09-02 |
ISBN-10 |
: 3527407227 |
ISBN-13 |
: 9783527407224 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Anomalous Transport by : Rainer Klages
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.
Author |
: Svatopluk Fucik |
Publisher |
: Elsevier |
Total Pages |
: 360 |
Release |
: 2014-12-03 |
ISBN-10 |
: 9781483278377 |
ISBN-13 |
: 1483278379 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Nonlinear Differential Equations by : Svatopluk Fucik
Studies in Applied Mathematics, 2: Nonlinear Differential Equations focuses on modern methods of solutions to boundary value problems in linear partial differential equations. The book first tackles linear and nonlinear equations, free boundary problem, second order equations, higher order equations, boundary conditions, and spaces of continuous functions. The text then examines the weak solution of a boundary value problem and variational and topological methods. Discussions focus on general boundary conditions for second order ordinary differential equations, minimal surfaces, existence theorems, potentials of boundary value problems, second derivative of a functional, convex functionals, Lagrange conditions, differential operators, Sobolev spaces, and boundary value problems. The manuscript examines noncoercive problems and vibrational inequalities. Topics include existence theorems, formulation of the problem, vanishing nonlinearities, jumping nonlinearities with finite jumps, rapid nonlinearities, and periodic problems. The text is highly recommended for mathematicians and engineers interested in nonlinear differential equations.