Propagating Beam Analysis of Optical Waveguides

Propagating Beam Analysis of Optical Waveguides
Author :
Publisher : Research Studies Press Limited
Total Pages : 0
Release :
ISBN-10 : 0863802656
ISBN-13 : 9780863802652
Rating : 4/5 (56 Downloads)

Synopsis Propagating Beam Analysis of Optical Waveguides by : Junji Yamauchi

This book is for graduate students and scientists interested in the numerical analysis of dielectric waveguides. Engineers in industries should be interested since optical waveguide analysis is becoming popular and indispensable in designing various optical devices at a small cost of time and labour. This text is a comprehensive introduction to a beam propagation analysis of optical waveguides, and is the summary of the research investigations made at Hosei University, Japan. The subject described in the book includes the finite-difference beam-propagation method (BPM) in Cartesian, cylindrical, and oblique coordinates. For the Cartesian-coordinates-based BPM, semivectorial and fullvectorial BPMs are presented with some applications. Improved finite-difference formulas are introduced to accurately analyze graded-index and step-index waveguides. The alternating-direction implicit method is employed to efficiently treat three-dimensional structures. To deal with a reflection problem, a time-domain BPM, scalar FD-TD method, and vectorial FD-TD method are provided. A hybrid technique that combines the BPM and the FD-TD method is also described.

Beam Propagation Method for Design of Optical Waveguide Devices

Beam Propagation Method for Design of Optical Waveguide Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 401
Release :
ISBN-10 : 9781119083375
ISBN-13 : 1119083370
Rating : 4/5 (75 Downloads)

Synopsis Beam Propagation Method for Design of Optical Waveguide Devices by : Ginés Lifante Pedrola

The basic of the BPM technique in the frequency domain relies on treating the slowly varying envelope of the monochromatic electromagnetic field under paraxial propagation, thus allowing efficient numerical computation in terms of speed and allocated memory. In addition, the BPM based on finite differences is an easy way to implement robust and efficient computer codes. This book presents several approaches for treating the light: wide-angle, scalar approach, semivectorial treatment, and full vectorial treatment of the electromagnetic fields. Also, special topics in BPM cover the simulation of light propagation in anisotropic media, non-linear materials, electro-optic materials, and media with gain/losses, and describe how BPM can deal with strong index discontinuities or waveguide gratings, by introducing the bidirectional-BPM. BPM in the time domain is also described, and the book includes the powerful technique of finite difference time domain method, which fills the gap when the standard BPM is no longer applicable. Once the description of these numerical techniques have been detailed, the last chapter includes examples of passive, active and functional integrated photonic devices, such as waveguide reflectors, demultiplexers, polarization converters, electro-optic modulators, lasers or frequency converters. The book will help readers to understand several BPM approaches, to build their own codes, or to properly use the existing commercial software based on these numerical techniques.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Author :
Publisher : Elsevier
Total Pages : 578
Release :
ISBN-10 : 9780080455068
ISBN-13 : 0080455069
Rating : 4/5 (68 Downloads)

Synopsis Fundamentals of Optical Waveguides by : Katsunari Okamoto

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

Introduction to Optical Waveguide Analysis

Introduction to Optical Waveguide Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 292
Release :
ISBN-10 : 9780471465201
ISBN-13 : 0471465208
Rating : 4/5 (01 Downloads)

Synopsis Introduction to Optical Waveguide Analysis by : Kenji Kawano

A complete survey of modern design and analysis techniques for optical waveguides This volume thoroughly details modern and widely accepted methods for designing the optical waveguides used in telecommunications systems. It offers a straightforward presentation of the sophisticated techniques used in waveguide analysis and enables a quick grasp of modern numerical methods with easy mathematics. The book is intended to guide the reader to a comprehensive understanding of optical waveguide analysis through self-study. This comprehensive presentation includes: * An extensive and exhaustive list of mathematical manipulations * Detailed explanations of common design methods: finite element method (FEM), finite difference method (FDM), beam propagation method (BPM), and finite difference time-domain method (FD-TDM) * Explanations for numerical solutions of optical waveguide problems with sophisticated techniques used in modern computer-aided design (CAD) software * Solutions to Maxwell's equations and the Schrodinger equation The authors provide excellent self-study material for practitioners, researchers, and students, while also presenting detailed mathematical manipulations that can be easily understood by readers who are unfamiliar with them. Introduction to Optical Waveguide Analysis presents modern design methods in a comprehensive and easy-to-understand format.

Beam Propagation Method for Design of Optical Waveguide Devices

Beam Propagation Method for Design of Optical Waveguide Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 408
Release :
ISBN-10 : 9781119083382
ISBN-13 : 1119083389
Rating : 4/5 (82 Downloads)

Synopsis Beam Propagation Method for Design of Optical Waveguide Devices by : Ginés Lifante Pedrola

The basic of the BPM technique in the frequency domain relies on treating the slowly varying envelope of the monochromatic electromagnetic field under paraxial propagation, thus allowing efficient numerical computation in terms of speed and allocated memory. In addition, the BPM based on finite differences is an easy way to implement robust and efficient computer codes. This book presents several approaches for treating the light: wide-angle, scalar approach, semivectorial treatment, and full vectorial treatment of the electromagnetic fields. Also, special topics in BPM cover the simulation of light propagation in anisotropic media, non-linear materials, electro-optic materials, and media with gain/losses, and describe how BPM can deal with strong index discontinuities or waveguide gratings, by introducing the bidirectional-BPM. BPM in the time domain is also described, and the book includes the powerful technique of finite difference time domain method, which fills the gap when the standard BPM is no longer applicable. Once the description of these numerical techniques have been detailed, the last chapter includes examples of passive, active and functional integrated photonic devices, such as waveguide reflectors, demultiplexers, polarization converters, electro-optic modulators, lasers or frequency converters. The book will help readers to understand several BPM approaches, to build their own codes, or to properly use the existing commercial software based on these numerical techniques.

Optical Waveguide Theory

Optical Waveguide Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 742
Release :
ISBN-10 : 9781461328131
ISBN-13 : 1461328136
Rating : 4/5 (31 Downloads)

Synopsis Optical Waveguide Theory by : A.W. Snyder

This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goal required a maturation of the subject, and thus the text was intentionally developed over a protracted period of the last 10 years.

Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering

Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering
Author :
Publisher : BoD – Books on Demand
Total Pages : 194
Release :
ISBN-10 : 9781839681882
ISBN-13 : 1839681888
Rating : 4/5 (82 Downloads)

Synopsis Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering by : Patrick Steglich

Optical and microwave waveguides have attracted much research interest in both science and industry. The number of potential applications for their use is growing rapidly. This book examines recent advances in the broad field of waveguide technology. It covers current progress and latest breakthroughs in emergent applications in photonics and microwave engineering. The book includes ten contributions on recent developments in waveguide technologies including theory, simulation, and fabrication of novel waveguide concepts as well as reviews on recent advances.

Inhomogeneous Optical Waveguides

Inhomogeneous Optical Waveguides
Author :
Publisher : Springer Science & Business Media
Total Pages : 273
Release :
ISBN-10 : 9781461587620
ISBN-13 : 146158762X
Rating : 4/5 (20 Downloads)

Synopsis Inhomogeneous Optical Waveguides by : A. Ghatak

The propagation of electromagnetic waves in "square-law" media, i.e., media characterized by a quadratic spatial variation of the dielectric constant, has been a favorite subject of investigation in electromagnetic theory. However, with the recent fabrication of glass fibers with a quadratic radial variation of the dielectric constant and the application of such fibers to optical imaging and communications, this subject has also assumed practical importance. Comparison of experimental results on propagation, resolu tion, and pulse distortion in such inhomogeneous waveguides with theory has put the field on a sound base and spurred further work. The present book aims at presenting a unified view of important aspects of our knowledge of inhomogeneous optical waveguides. A brief discussion of homogeneous dielectric waveguides is unavoidable, since itforms a basis for the appreciation of inhomogeneous waveguides. A short course based on some chapters of this book was offered to graduate students at IIT Delhi and was well received. We consider that despite the unavoidable mathemati cal nature of the present book, the comparison of experimental results with theory throughout and the description of fabrication technology (Appen dixes A and B) should make its appeal universal. The authors are grateful to Dr. K. Thyagarajan for writing most of Chapter 9 and to their colleagues Dr. I. C. Goyal, Dr. B. P. Pal, and Dr. A.