Proofs And Ideas
Download Proofs And Ideas full books in PDF, epub, and Kindle. Read online free Proofs And Ideas ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: B. Sethuraman |
Publisher |
: American Mathematical Society |
Total Pages |
: 334 |
Release |
: 2021-12-02 |
ISBN-10 |
: 9781470465148 |
ISBN-13 |
: 1470465140 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Proofs and Ideas by : B. Sethuraman
Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
Author |
: Ethan D. Bloch |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 434 |
Release |
: 2013-12-01 |
ISBN-10 |
: 9781461221302 |
ISBN-13 |
: 1461221307 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Proofs and Fundamentals by : Ethan D. Bloch
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.
Author |
: Martin Aigner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 194 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662223437 |
ISBN-13 |
: 3662223430 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Proofs from THE BOOK by : Martin Aigner
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Author |
: Julian Havil |
Publisher |
: Princeton University Press |
Total Pages |
: 213 |
Release |
: 2010-08-02 |
ISBN-10 |
: 9781400837380 |
ISBN-13 |
: 1400837383 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Nonplussed! by : Julian Havil
Math—the application of reasonable logic to reasonable assumptions—usually produces reasonable results. But sometimes math generates astonishing paradoxes—conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!—a delightfully eclectic collection of paradoxes from many different areas of math—popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles.
Author |
: Richard H. Hammack |
Publisher |
: |
Total Pages |
: 314 |
Release |
: 2016-01-01 |
ISBN-10 |
: 0989472116 |
ISBN-13 |
: 9780989472111 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Book of Proof by : Richard H. Hammack
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Author |
: Imre Lakatos |
Publisher |
: Cambridge University Press |
Total Pages |
: 190 |
Release |
: 1976 |
ISBN-10 |
: 0521290384 |
ISBN-13 |
: 9780521290388 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Proofs and Refutations by : Imre Lakatos
Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.
Author |
: Elias Zakon |
Publisher |
: The Trillia Group |
Total Pages |
: 208 |
Release |
: 2001 |
ISBN-10 |
: 9781931705004 |
ISBN-13 |
: 1931705003 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Basic Concepts of Mathematics by : Elias Zakon
Author |
: Daniel J. Velleman |
Publisher |
: Cambridge University Press |
Total Pages |
: 401 |
Release |
: 2006-01-16 |
ISBN-10 |
: 9780521861243 |
ISBN-13 |
: 0521861241 |
Rating |
: 4/5 (43 Downloads) |
Synopsis How to Prove It by : Daniel J. Velleman
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Author |
: Joel David Hamkins |
Publisher |
: MIT Press |
Total Pages |
: 132 |
Release |
: 2021-02-23 |
ISBN-10 |
: 9780262362566 |
ISBN-13 |
: 0262362562 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Proof and the Art of Mathematics by : Joel David Hamkins
How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.
Author |
: Ajit Kumar |
Publisher |
: CRC Press |
Total Pages |
: 320 |
Release |
: 2014-01-10 |
ISBN-10 |
: 9781482216387 |
ISBN-13 |
: 1482216388 |
Rating |
: 4/5 (87 Downloads) |
Synopsis A Basic Course in Real Analysis by : Ajit Kumar
Based on the authors’ combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage.