Proceedings Of The Geometric Algebraic And Topological Methods For Quantum Field Theory 2013
Download Proceedings Of The Geometric Algebraic And Topological Methods For Quantum Field Theory 2013 full books in PDF, epub, and Kindle. Read online free Proceedings Of The Geometric Algebraic And Topological Methods For Quantum Field Theory 2013 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Alexander Cardona |
Publisher |
: World Scientific |
Total Pages |
: 385 |
Release |
: 2016-09-06 |
ISBN-10 |
: 9789814730891 |
ISBN-13 |
: 9814730890 |
Rating |
: 4/5 (91 Downloads) |
Synopsis Geometric, Algebraic And Topological Methods For Quantum Field Theory - Proceedings Of The 2013 Villa De Leyva Summer School by : Alexander Cardona
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Author |
: Sylvie Payche |
Publisher |
: World Scientific |
Total Pages |
: 378 |
Release |
: 2014 |
ISBN-10 |
: 9789814460057 |
ISBN-13 |
: 9814460052 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Geometric, Algebraic and Topological Methods for Quantum Field Theory by : Sylvie Payche
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
Author |
: Leonardo Cano |
Publisher |
: |
Total Pages |
: 385 |
Release |
: 2016 |
ISBN-10 |
: 9814730882 |
ISBN-13 |
: 9789814730884 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Geometric by : Leonardo Cano
"Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators."--Publisher's website.
Author |
: Alexander Cardona |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 372 |
Release |
: 2016-02-28 |
ISBN-10 |
: 9814730874 |
ISBN-13 |
: 9789814730877 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Proceedings of the Geometric, Algebraic and Topological Methods for Quantum Field Theory 2013 by : Alexander Cardona
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Author |
: Alexander Cardona |
Publisher |
: Springer |
Total Pages |
: 347 |
Release |
: 2017-10-26 |
ISBN-10 |
: 9783319654270 |
ISBN-13 |
: 3319654276 |
Rating |
: 4/5 (70 Downloads) |
Synopsis Quantization, Geometry and Noncommutative Structures in Mathematics and Physics by : Alexander Cardona
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Author |
: Alexander Cardona |
Publisher |
: Cambridge University Press |
Total Pages |
: 395 |
Release |
: 2013-05-09 |
ISBN-10 |
: 9781107355194 |
ISBN-13 |
: 1107355192 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Geometric and Topological Methods for Quantum Field Theory by : Alexander Cardona
Based on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics.
Author |
: José Ignacio Burgos Gil |
Publisher |
: Springer Nature |
Total Pages |
: 631 |
Release |
: 2020-03-14 |
ISBN-10 |
: 9783030370312 |
ISBN-13 |
: 3030370313 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Periods in Quantum Field Theory and Arithmetic by : José Ignacio Burgos Gil
This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Author |
: Valery A. Gritsenko |
Publisher |
: Springer Nature |
Total Pages |
: 422 |
Release |
: 2020-07-09 |
ISBN-10 |
: 9783030424008 |
ISBN-13 |
: 3030424006 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Partition Functions and Automorphic Forms by : Valery A. Gritsenko
This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.
Author |
: Alexander Cardona |
Publisher |
: World Scientific |
Total Pages |
: 495 |
Release |
: 2003-03-21 |
ISBN-10 |
: 9789814487672 |
ISBN-13 |
: 9814487678 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School by : Alexander Cardona
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Author |
: Daniel S. Freed |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 202 |
Release |
: 2019-08-23 |
ISBN-10 |
: 9781470452063 |
ISBN-13 |
: 1470452065 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.