Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II
Author :
Publisher : Univ of California Press
Total Pages : 500
Release :
ISBN-10 : 9780520325333
ISBN-13 : 0520325338
Rating : 4/5 (33 Downloads)

Synopsis Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II by : Lucien M. Le Cam

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1967.

Research in Progress

Research in Progress
Author :
Publisher :
Total Pages : 496
Release :
ISBN-10 : UVA:X030447212
ISBN-13 :
Rating : 4/5 (12 Downloads)

Synopsis Research in Progress by :

Prior Processes and Their Applications

Prior Processes and Their Applications
Author :
Publisher : Springer
Total Pages : 337
Release :
ISBN-10 : 9783319327891
ISBN-13 : 3319327895
Rating : 4/5 (91 Downloads)

Synopsis Prior Processes and Their Applications by : Eswar G. Phadia

This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and Polya tree and their extensions form a separate chapter, while the last two chapters present the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data as well as right censored data. Because of the conjugacy property of some of these processes, most solutions are presented in closed form. However, the current interest in modeling and treating large-scale and complex data also poses a problem – the posterior distribution, which is essential to Bayesian analysis, is invariably not in a closed form, making it necessary to resort to simulation. Accordingly, the book also introduces several computational procedures, such as the Gibbs sampler, Blocked Gibbs sampler and slice sampling, highlighting essential steps of algorithms while discussing specific models. In addition, it features crucial steps of proofs and derivations, explains the relationships between different processes and provides further clarifications to promote a deeper understanding. Lastly, it includes a comprehensive list of references, equipping readers to explore further on their own.

Linear Stochastic Systems

Linear Stochastic Systems
Author :
Publisher : Springer
Total Pages : 788
Release :
ISBN-10 : 9783662457504
ISBN-13 : 3662457504
Rating : 4/5 (04 Downloads)

Synopsis Linear Stochastic Systems by : Anders Lindquist

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.