Probability On Real Lie Algebras
Download Probability On Real Lie Algebras full books in PDF, epub, and Kindle. Read online free Probability On Real Lie Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Uwe Franz |
Publisher |
: Cambridge University Press |
Total Pages |
: 303 |
Release |
: 2016-01-25 |
ISBN-10 |
: 9781107128651 |
ISBN-13 |
: 110712865X |
Rating |
: 4/5 (51 Downloads) |
Synopsis Probability on Real Lie Algebras by : Uwe Franz
This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.
Author |
: David Applebaum |
Publisher |
: Springer |
Total Pages |
: 236 |
Release |
: 2014-06-26 |
ISBN-10 |
: 9783319078427 |
ISBN-13 |
: 3319078429 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Probability on Compact Lie Groups by : David Applebaum
Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.
Author |
: Alexander A. Kirillov |
Publisher |
: Cambridge University Press |
Total Pages |
: 237 |
Release |
: 2008-07-31 |
ISBN-10 |
: 9780521889698 |
ISBN-13 |
: 0521889693 |
Rating |
: 4/5 (98 Downloads) |
Synopsis An Introduction to Lie Groups and Lie Algebras by : Alexander A. Kirillov
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Author |
: Nathan Jacobson |
Publisher |
: Courier Corporation |
Total Pages |
: 348 |
Release |
: 2013-09-16 |
ISBN-10 |
: 9780486136790 |
ISBN-13 |
: 0486136795 |
Rating |
: 4/5 (90 Downloads) |
Synopsis Lie Algebras by : Nathan Jacobson
DIVDefinitive treatment of important subject in modern mathematics. Covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, etc. Index. /div
Author |
: K. Erdmann |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 254 |
Release |
: 2006-09-28 |
ISBN-10 |
: 9781846284908 |
ISBN-13 |
: 1846284902 |
Rating |
: 4/5 (08 Downloads) |
Synopsis Introduction to Lie Algebras by : K. Erdmann
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.
Author |
: Daniel Neuenschwander |
Publisher |
: Springer |
Total Pages |
: 146 |
Release |
: 2006-11-14 |
ISBN-10 |
: 9783540685906 |
ISBN-13 |
: 3540685901 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Probabilities on the Heisenberg Group by : Daniel Neuenschwander
The Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers.
Author |
: Rick Durrett |
Publisher |
: Cambridge University Press |
Total Pages |
: |
Release |
: 2010-08-30 |
ISBN-10 |
: 9781139491136 |
ISBN-13 |
: 113949113X |
Rating |
: 4/5 (36 Downloads) |
Synopsis Probability by : Rick Durrett
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Author |
: Roger William Carter |
Publisher |
: Cambridge University Press |
Total Pages |
: 662 |
Release |
: 2005-10-27 |
ISBN-10 |
: 0521851386 |
ISBN-13 |
: 9780521851381 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Lie Algebras of Finite and Affine Type by : Roger William Carter
This book provides a thorough but relaxed mathematical treatment of Lie algebras.
Author |
: Gregory S. Chirikjian |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 397 |
Release |
: 2009-09-02 |
ISBN-10 |
: 9780817648039 |
ISBN-13 |
: 0817648038 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Stochastic Models, Information Theory, and Lie Groups, Volume 1 by : Gregory S. Chirikjian
This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
Author |
: John Stillwell |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 230 |
Release |
: 2008-12-15 |
ISBN-10 |
: 9780387782157 |
ISBN-13 |
: 038778215X |
Rating |
: 4/5 (57 Downloads) |
Synopsis Naive Lie Theory by : John Stillwell
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).