Probabilistic Networks and Expert Systems

Probabilistic Networks and Expert Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 340
Release :
ISBN-10 : 0387718230
ISBN-13 : 9780387718231
Rating : 4/5 (30 Downloads)

Synopsis Probabilistic Networks and Expert Systems by : Robert G. Cowell

Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.

Probabilistic Reasoning in Expert Systems

Probabilistic Reasoning in Expert Systems
Author :
Publisher : CreateSpace
Total Pages : 448
Release :
ISBN-10 : 1477452540
ISBN-13 : 9781477452547
Rating : 4/5 (40 Downloads)

Synopsis Probabilistic Reasoning in Expert Systems by : Richard E. Neapolitan

This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.

Expert Systems and Probabilistic Network Models

Expert Systems and Probabilistic Network Models
Author :
Publisher : Springer Science & Business Media
Total Pages : 612
Release :
ISBN-10 : 9781461222705
ISBN-13 : 1461222702
Rating : 4/5 (05 Downloads)

Synopsis Expert Systems and Probabilistic Network Models by : Enrique Castillo

Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.

Probabilistic Methods for Financial and Marketing Informatics

Probabilistic Methods for Financial and Marketing Informatics
Author :
Publisher : Elsevier
Total Pages : 427
Release :
ISBN-10 : 9780080555676
ISBN-13 : 0080555675
Rating : 4/5 (76 Downloads)

Synopsis Probabilistic Methods for Financial and Marketing Informatics by : Richard E. Neapolitan

Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and using the software package Netica to represent and solve problems. The book contains unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance. It shares insights about when and why probabilistic methods can and cannot be used effectively. This book is recommended for all R&D professionals and students who are involved with industrial informatics, that is, applying the methodologies of computer science and engineering to business or industry information. This includes computer science and other professionals in the data management and data mining field whose interests are business and marketing information in general, and who want to apply AI and probabilistic methods to their problems in order to better predict how well a product or service will do in a particular market, for instance. Typical fields where this technology is used are in advertising, venture capital decision making, operational risk measurement in any industry, credit scoring, and investment science. - Unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance - Shares insights about when and why probabilistic methods can and cannot be used effectively - Complete review of Bayesian networks and probabilistic methods for those IT professionals new to informatics.

Fuzzy Expert Systems and Fuzzy Reasoning

Fuzzy Expert Systems and Fuzzy Reasoning
Author :
Publisher : John Wiley & Sons
Total Pages : 423
Release :
ISBN-10 : 9780471698494
ISBN-13 : 0471698490
Rating : 4/5 (94 Downloads)

Synopsis Fuzzy Expert Systems and Fuzzy Reasoning by : William Siler

Hier lernen Sie, Expertensysteme auf der Basis von Fuzzy Logic zu konstruieren, die sich für den praktischen Einsatz eignen. Expertensysteme werden zunächst allgemein definiert, und die zugrundeliegende Mathematik wird eingeführt. Regelbasierte Systeme werden gründlicher besprochen als in jedem anderen Buch mit ähnlichem Thema. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen. Von einem zugehörigen ftp-Server können Sie Ergänzungsmaterial abrufen. Für Praktiker und Forscher aus dem akademischen Umfeld gleichermaßen geeignet!

Probabilistic Reasoning in Intelligent Systems

Probabilistic Reasoning in Intelligent Systems
Author :
Publisher : Elsevier
Total Pages : 573
Release :
ISBN-10 : 9780080514895
ISBN-13 : 0080514898
Rating : 4/5 (95 Downloads)

Synopsis Probabilistic Reasoning in Intelligent Systems by : Judea Pearl

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Probabilistic Methods for Bioinformatics

Probabilistic Methods for Bioinformatics
Author :
Publisher : Morgan Kaufmann
Total Pages : 421
Release :
ISBN-10 : 9780080919362
ISBN-13 : 0080919367
Rating : 4/5 (62 Downloads)

Synopsis Probabilistic Methods for Bioinformatics by : Richard E. Neapolitan

The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. - Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. - Shares insights about when and why probabilistic methods can and cannot be used effectively; - Complete review of Bayesian networks and probabilistic methods with a practical approach.

Handbook of Probability

Handbook of Probability
Author :
Publisher : SAGE
Total Pages : 489
Release :
ISBN-10 : 9781412927147
ISBN-13 : 1412927145
Rating : 4/5 (47 Downloads)

Synopsis Handbook of Probability by : Tamás Rudas

"This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines." —CHOICE Providing cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of various backgrounds can use the reference either as a primer for understanding basic probability theory or as a more advanced research tool for specific projects requiring a deeper understanding. The wide-ranging applications of probability presented make it useful for scholars who need to make interdisciplinary connections in their work. Key Features Contains contributions from the international who's-who of probability across several disciplines Offers an equal balance of theory and applications Explains the most important concepts of probability theory in a non-technical yet comprehensive way Provides in-depth examples of recent applications in the social and behavioral sciences as well as education, business, and law Intended Audience This Handbook makes an ideal library purchase. In addition, this volume should also be of interest to individual scholars in the social and behavioral sciences.

Probabilistic Machine Learning

Probabilistic Machine Learning
Author :
Publisher : MIT Press
Total Pages : 858
Release :
ISBN-10 : 9780262369305
ISBN-13 : 0262369303
Rating : 4/5 (05 Downloads)

Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.