Probabilistic Conditional Independence Structures

Probabilistic Conditional Independence Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781846280832
ISBN-13 : 1846280834
Rating : 4/5 (32 Downloads)

Synopsis Probabilistic Conditional Independence Structures by : Milan Studeny

Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach. The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets. Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given. In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence. The necessary elementary mathematical notions are recalled in an appendix.

Tychomancy

Tychomancy
Author :
Publisher : Harvard University Press
Total Pages : 260
Release :
ISBN-10 : 9780674076020
ISBN-13 : 0674076028
Rating : 4/5 (20 Downloads)

Synopsis Tychomancy by : Michael Strevens

Tychomancy—meaning “the divination of chances”—presents a set of rules for inferring the physical probabilities of outcomes from the causal or dynamic properties of the systems that produce them. Probabilities revealed by the rules are wide-ranging: they include the probability of getting a 5 on a die roll, the probability distributions found in statistical physics, and the probabilities that underlie many prima facie judgments about fitness in evolutionary biology. Michael Strevens makes three claims about the rules. First, they are reliable. Second, they are known, though not fully consciously, to all human beings: they constitute a key part of the physical intuition that allows us to navigate around the world safely in the absence of formal scientific knowledge. Third, they have played a crucial but unrecognized role in several major scientific innovations. A large part of Tychomancy is devoted to this historical role for probability inference rules. Strevens first analyzes James Clerk Maxwell’s extraordinary, apparently a priori, deduction of the molecular velocity distribution in gases, which launched statistical physics. Maxwell did not derive his distribution from logic alone, Strevens proposes, but rather from probabilistic knowledge common to all human beings, even infants as young as six months old. Strevens then turns to Darwin’s theory of natural selection, the statistics of measurement, and the creation of models of complex systems, contending in each case that these elements of science could not have emerged when or how they did without the ability to “eyeball” the values of physical probabilities.

Bayesian Networks

Bayesian Networks
Author :
Publisher : CRC Press
Total Pages : 275
Release :
ISBN-10 : 9781000410389
ISBN-13 : 1000410382
Rating : 4/5 (89 Downloads)

Synopsis Bayesian Networks by : Marco Scutari

Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Probabilistic Graphical Models

Probabilistic Graphical Models
Author :
Publisher : Springer Nature
Total Pages : 370
Release :
ISBN-10 : 9783030619435
ISBN-13 : 3030619435
Rating : 4/5 (35 Downloads)

Synopsis Probabilistic Graphical Models by : Luis Enrique Sucar

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.

High-Dimensional Probability

High-Dimensional Probability
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9781108415194
ISBN-13 : 1108415199
Rating : 4/5 (94 Downloads)

Synopsis High-Dimensional Probability by : Roman Vershynin

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Information Processing and Management of Uncertainty in Knowledge-Based Systems
Author :
Publisher : Springer
Total Pages : 786
Release :
ISBN-10 : 9783642140556
ISBN-13 : 3642140556
Rating : 4/5 (56 Downloads)

Synopsis Information Processing and Management of Uncertainty in Knowledge-Based Systems by : Eyke Hüllermeier

The International Conference on Information Processing and Management of - certainty in Knowledge-Based Systems, IPMU, is organized every two years with the aim of bringing together scientists working on methods for the management of uncertainty and aggregation of information in intelligent systems. Since 1986, this conference has been providing a forum for the exchange of ideas between th theoreticians and practitioners working in these areas and related ?elds. The 13 IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010. This volume contains 79 papers selected through a rigorous reviewing process. The contributions re?ect the richness of research on topics within the scope of the conference and represent several important developments, speci?cally focused on theoretical foundations and methods for information processing and management of uncertainty in knowledge-based systems. We were delighted that Melanie Mitchell (Portland State University, USA), Nihkil R. Pal (Indian Statistical Institute), Bernhard Sch ̈ olkopf (Max Planck I- titute for Biological Cybernetics, Tubing ̈ en, Germany) and Wolfgang Wahlster (German Research Center for Arti?cial Intelligence, Saarbruc ̈ ken) accepted our invitations to present keynote lectures. Jim Bezdek received the Kamp ́ede F ́ eriet Award, granted every two years on the occasion of the IPMU conference, in view of his eminent research contributions to the handling of uncertainty in clustering, data analysis and pattern recognition.

Algebraic Methods in Statistics and Probability II

Algebraic Methods in Statistics and Probability II
Author :
Publisher : American Mathematical Soc.
Total Pages : 358
Release :
ISBN-10 : 9780821848913
ISBN-13 : 0821848917
Rating : 4/5 (13 Downloads)

Synopsis Algebraic Methods in Statistics and Probability II by : Marlos A. G. Viana

A decade after the publication of Contemporary Mathematics Vol. 287, the present volume demonstrates the consolidation of important areas, such as algebraic statistics, computational commutative algebra, and deeper aspects of graphical models. --

Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence
Author :
Publisher : Elsevier
Total Pages : 625
Release :
ISBN-10 : 9781483298603
ISBN-13 : 1483298604
Rating : 4/5 (03 Downloads)

Synopsis Uncertainty in Artificial Intelligence by : MKP

Uncertainty Proceedings 1994

Statistical and Inductive Inference by Minimum Message Length

Statistical and Inductive Inference by Minimum Message Length
Author :
Publisher : Springer Science & Business Media
Total Pages : 456
Release :
ISBN-10 : 038723795X
ISBN-13 : 9780387237954
Rating : 4/5 (5X Downloads)

Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace

The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.

Handbook of Graphical Models

Handbook of Graphical Models
Author :
Publisher : CRC Press
Total Pages : 612
Release :
ISBN-10 : 9780429874239
ISBN-13 : 0429874235
Rating : 4/5 (39 Downloads)

Synopsis Handbook of Graphical Models by : Marloes Maathuis

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.