The Probabilistic Method

The Probabilistic Method
Author :
Publisher : John Wiley & Sons
Total Pages : 396
Release :
ISBN-10 : 9781119062073
ISBN-13 : 1119062071
Rating : 4/5 (73 Downloads)

Synopsis The Probabilistic Method by : Noga Alon

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Probabilistic Approach to Geometry

Probabilistic Approach to Geometry
Author :
Publisher : Advanced Studies in Pure Mathe
Total Pages : 514
Release :
ISBN-10 : 4931469582
ISBN-13 : 9784931469587
Rating : 4/5 (82 Downloads)

Synopsis Probabilistic Approach to Geometry by : Motoko Kotani

The first Seasonal Institute of the Mathematical Society of Japan (MSJ-SI) “Probabilistic Approach to Geometry” was held at Kyoto University, Japan, on 28th July 2008 - 8th August, 2008. The conference aimed to make interactions between Geometry and Probability Theory and seek for new directions of those research areas. This volume contains the proceedings, selected research articles based on the talks, including survey articles on random groups, rough paths, and heat kernels by the survey lecturers in the conference. The readers will benefit of exploring in this developing research area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America

High-Dimensional Probability

High-Dimensional Probability
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9781108415194
ISBN-13 : 1108415199
Rating : 4/5 (94 Downloads)

Synopsis High-Dimensional Probability by : Roman Vershynin

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Ten Lectures on the Probabilistic Method

Ten Lectures on the Probabilistic Method
Author :
Publisher : SIAM
Total Pages : 98
Release :
ISBN-10 : 1611970075
ISBN-13 : 9781611970074
Rating : 4/5 (75 Downloads)

Synopsis Ten Lectures on the Probabilistic Method by : Joel Spencer

This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson inequalities. These inequalities allow accurate approximation of extremely small probabilities. A new algorithmic approach to the Lovasz Local Lemma, attributed to Jozsef Beck, has been added to Lecture 8, as well. Throughout the monograph, Spencer retains the informal style of his original lecture notes and emphasizes the methodology, shunning the more technical "best possible" results in favor of clearer exposition. The book is not encyclopedic--it contains only those examples that clearly display the methodology. The probabilistic method is a powerful tool in graph theory, combinatorics, and theoretical computer science. It allows one to prove the existence of objects with certain properties (e.g., colorings) by showing that an appropriately defined random object has positive probability of having those properties.

From Gestalt Theory to Image Analysis

From Gestalt Theory to Image Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 278
Release :
ISBN-10 : 9780387726359
ISBN-13 : 0387726357
Rating : 4/5 (59 Downloads)

Synopsis From Gestalt Theory to Image Analysis by : Agnès Desolneux

This book introduces a new theory in Computer Vision yielding elementary techniques to analyze digital images. These techniques are a mathematical formalization of the Gestalt theory. From the mathematical viewpoint the closest field to it is stochastic geometry, involving basic probability and statistics, in the context of image analysis. The book is mathematically self-contained, needing only basic understanding of probability and calculus. The text includes more than 130 illustrations, and numerous examples based on specific images on which the theory is tested. Detailed exercises at the end of each chapter help the reader develop a firm understanding of the concepts imparted.

The Probabilistic Method

The Probabilistic Method
Author :
Publisher : John Wiley & Sons
Total Pages : 322
Release :
ISBN-10 : 9780471653981
ISBN-13 : 0471653985
Rating : 4/5 (81 Downloads)

Synopsis The Probabilistic Method by : Noga Alon

The leading reference on probabilistic methods in combinatorics-now expanded and updated When it was first published in 1991, The Probabilistic Method became instantly the standard reference on one of the most powerful and widely used tools in combinatorics. Still without competition nearly a decade later, this new edition brings you up to speed on recent developments, while adding useful exercises and over 30% new material. It continues to emphasize the basic elements of the methodology, discussing in a remarkably clear and informal style both algorithmic and classical methods as well as modern applications. The Probabilistic Method, Second Edition begins with basic techniques that use expectation and variance, as well as the more recent martingales and correlation inequalities, then explores areas where probabilistic techniques proved successful, including discrepancy and random graphs as well as cutting-edge topics in theoretical computer science. A series of proofs, or "probabilistic lenses," are interspersed throughout the book, offering added insight into the application of the probabilistic approach. New and revised coverage includes: * Several improved as well as new results * A continuous approach to discrete probabilistic problems * Talagrand's Inequality and other novel concentration results * A discussion of the connection between discrepancy and VC-dimension * Several combinatorial applications of the entropy function and its properties * A new section on the life and work of Paul Erdös-the developer of the probabilistic method

Handbook of Probabilistic Models

Handbook of Probabilistic Models
Author :
Publisher : Butterworth-Heinemann
Total Pages : 592
Release :
ISBN-10 : 9780128165461
ISBN-13 : 0128165464
Rating : 4/5 (61 Downloads)

Synopsis Handbook of Probabilistic Models by : Pijush Samui

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Combinatorics, Geometry and Probability

Combinatorics, Geometry and Probability
Author :
Publisher : Cambridge University Press
Total Pages : 588
Release :
ISBN-10 : 0521584728
ISBN-13 : 9780521584722
Rating : 4/5 (28 Downloads)

Synopsis Combinatorics, Geometry and Probability by : Béla Bollobás

A panorama of combinatorics by the world's experts.

Chance Encounters: Probability in Education

Chance Encounters: Probability in Education
Author :
Publisher : Springer Science & Business Media
Total Pages : 324
Release :
ISBN-10 : 9789401135320
ISBN-13 : 9401135320
Rating : 4/5 (20 Downloads)

Synopsis Chance Encounters: Probability in Education by : R. Kapadia

This book has been written to fIll a substantial gap in the current literature in mathemat ical education. Throughout the world, school mathematical curricula have incorporated probability and statistics as new topics. There have been many research papers written on specifIc aspects of teaching, presenting novel and unusual approaches to introducing ideas in the classroom; however, there has been no book giving an overview. Here we have decided to focus on probability, making reference to inferential statistics where appropriate; we have deliberately avoided descriptive statistics as it is a separate area and would have made ideas less coherent and the book excessively long. A general lead has been taken from the fIrst book in this series written by the man who, probably more than everyone else, has established mathematical education as an aca demic discipline. However, in his exposition of didactical phenomenology, Freudenthal does not analyze probability. Thus, in this book, we show how probability is able to organize the world of chance and idealized chance phenomena based on its development and applications. In preparing these chapters we and our co-authors have reflected on our own acquisition of probabilistic ideas, analyzed textbooks, and observed and reflect ed upon the learning processes involved when children and adults struggle to acquire the relevant concepts.

Measure Theory and Probability Theory

Measure Theory and Probability Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 625
Release :
ISBN-10 : 9780387329031
ISBN-13 : 038732903X
Rating : 4/5 (31 Downloads)

Synopsis Measure Theory and Probability Theory by : Krishna B. Athreya

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.