Practical Stability of Nonlinear Systems

Practical Stability of Nonlinear Systems
Author :
Publisher : World Scientific
Total Pages : 228
Release :
ISBN-10 : 981020356X
ISBN-13 : 9789810203566
Rating : 4/5 (6X Downloads)

Synopsis Practical Stability of Nonlinear Systems by : V. Lakshmikantham

This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.

Applied Nonlinear Control

Applied Nonlinear Control
Author :
Publisher :
Total Pages : 461
Release :
ISBN-10 : 0130400491
ISBN-13 : 9780130400499
Rating : 4/5 (91 Downloads)

Synopsis Applied Nonlinear Control by : Jean-Jacques E. Slotine

In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.

Nonlinear Systems Analysis

Nonlinear Systems Analysis
Author :
Publisher : SIAM
Total Pages : 515
Release :
ISBN-10 : 0898719186
ISBN-13 : 9780898719185
Rating : 4/5 (86 Downloads)

Synopsis Nonlinear Systems Analysis by : M. Vidyasagar

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.

State Estimation and Stabilization of Nonlinear Systems

State Estimation and Stabilization of Nonlinear Systems
Author :
Publisher : Springer Nature
Total Pages : 439
Release :
ISBN-10 : 9783031379703
ISBN-13 : 3031379705
Rating : 4/5 (03 Downloads)

Synopsis State Estimation and Stabilization of Nonlinear Systems by : Abdellatif Ben Makhlouf

This book presents the separation principle which is also known as the principle of separation of estimation and control and states that, under certain assumptions, the problem of designing an optimal feedback controller for a stochastic system can be solved by designing an optimal observer for the system's state, which feeds into an optimal deterministic controller for the system. Thus, the problem may be divided into two halves, which simplifies its design. In the context of deterministic linear systems, the first instance of this principle is that if a stable observer and stable state feedback are built for a linear time-invariant system (LTI system hereafter), then the combined observer and feedback are stable. The separation principle does not true for nonlinear systems in general. Another instance of the separation principle occurs in the context of linear stochastic systems, namely that an optimum state feedback controller intended to minimize a quadratic cost is optimal for the stochastic control problem with output measurements. The ideal solution consists of a Kalman filter and a linear-quadratic regulator when both process and observation noise are Gaussian. The term for this is linear-quadratic-Gaussian control. More generally, given acceptable conditions and when the noise is a martingale (with potential leaps), a separation principle, also known as the separation principle in stochastic control, applies when the noise is a martingale (with possible jumps).

Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach
Author :
Publisher : John Wiley & Sons
Total Pages : 184
Release :
ISBN-10 : 9781119140528
ISBN-13 : 1119140528
Rating : 4/5 (28 Downloads)

Synopsis Finite-Time Stability: An Input-Output Approach by : Francesco Amato

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Practical Bifurcation and Stability Analysis

Practical Bifurcation and Stability Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 493
Release :
ISBN-10 : 9781441917409
ISBN-13 : 1441917403
Rating : 4/5 (09 Downloads)

Synopsis Practical Bifurcation and Stability Analysis by : Rüdiger U. Seydel

Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.

Nonlinear Dynamical Systems and Control

Nonlinear Dynamical Systems and Control
Author :
Publisher : Princeton University Press
Total Pages : 975
Release :
ISBN-10 : 9781400841042
ISBN-13 : 1400841046
Rating : 4/5 (42 Downloads)

Synopsis Nonlinear Dynamical Systems and Control by : Wassim M. Haddad

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics

Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics
Author :
Publisher : Springer Nature
Total Pages : 525
Release :
ISBN-10 : 9783030503024
ISBN-13 : 303050302X
Rating : 4/5 (24 Downloads)

Synopsis Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics by : Victor A. Sadovnichiy

This book focuses on the latest approaches and methods in fundamental mathematics and mechanics, and discusses the practical application of abstract mathematical approaches, such as differential geometry, and differential and difference equations in solid mechanics, hydrodynamics, aerodynamics, optimization, decision-making theory and control theory. Featuring selected contributions to the open seminar series of Lomonosov Moscow State University and Igor Sikorsky Kyiv Polytechnic Institute by mathematicians from China, Germany, France, Italy, Spain, Russia, Ukraine and the USA, the book will appeal to mathematicians and engineers working at the interface of these fields

Nonlinear Physical Systems

Nonlinear Physical Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 328
Release :
ISBN-10 : 9781118577547
ISBN-13 : 111857754X
Rating : 4/5 (47 Downloads)

Synopsis Nonlinear Physical Systems by : Oleg N. Kirillov

Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.