Positive Definite Unimodular Lattices with Trivial Automorphism Groups

Positive Definite Unimodular Lattices with Trivial Automorphism Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 79
Release :
ISBN-10 : 9780821824917
ISBN-13 : 0821824910
Rating : 4/5 (17 Downloads)

Synopsis Positive Definite Unimodular Lattices with Trivial Automorphism Groups by : Etsuko Bannai

The existence of lattices with trivial automorphism group was shown by O'Meara, who gave an algorithm to construct such a lattice starting from any given lattice. In this process, the discriminants of the lattices increase in each step. Biermann proved the existence of a lattice with trivial automorphism group in every genus of positive definite integral lattices of any dimension with sufficiently large discriminant. In his proof the fact that the discriminant is very large is crucial. We are, instead, interested in lattices with small discriminant.

Extension of Positive-Definite Distributions and Maximum Entropy

Extension of Positive-Definite Distributions and Maximum Entropy
Author :
Publisher : American Mathematical Soc.
Total Pages : 111
Release :
ISBN-10 : 9780821825518
ISBN-13 : 0821825518
Rating : 4/5 (18 Downloads)

Synopsis Extension of Positive-Definite Distributions and Maximum Entropy by : Jean-Pierre Gabardo

In this work, the maximum entropy method is used to solve the extension problem associated with a positive-definite function, or distribution, defined on an interval of the real line. Garbardo computes explicitly the entropy maximizers corresponding to various logarithmic integrals depending on a complex parameter and investigates the relation to the problem of uniqueness of the extension. These results are based on a generalization, in both the discrete and continuous cases, of Burg's maximum entropy theorem.

Orthogonal Decompositions and Integral Lattices

Orthogonal Decompositions and Integral Lattices
Author :
Publisher : Walter de Gruyter
Total Pages : 549
Release :
ISBN-10 : 9783110901757
ISBN-13 : 3110901757
Rating : 4/5 (57 Downloads)

Synopsis Orthogonal Decompositions and Integral Lattices by : Alexei Kostrikin

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Algebraic and Arithmetic Theory of Quadratic Forms

Algebraic and Arithmetic Theory of Quadratic Forms
Author :
Publisher : American Mathematical Soc.
Total Pages : 364
Release :
ISBN-10 : 9780821834411
ISBN-13 : 082183441X
Rating : 4/5 (11 Downloads)

Synopsis Algebraic and Arithmetic Theory of Quadratic Forms by : Ricardo Baeza

This proceedings volume contains papers presented at the International Conference on the algebraic and arithmetic theory of quadratic forms held in Talca (Chile). The modern theory of quadratic forms has connections with a broad spectrum of mathematical areas including number theory, geometry, and K-theory. This volume contains survey and research articles covering the range of connections among these topics. The survey articles bring readers up-to-date on research and open problems in representation theory of integral quadratic forms, the algebraic theory of finite square class fields, and developments in the theory of Witt groups of triangulated categories. The specialized articles present important developments in both the algebraic and arithmetic theory of quadratic forms, as well as connections to geometry and K-theory. The volume is suitable for graduate students and research mathematicians interested in various aspects of the theory of quadratic forms.

Imbeddings of Three-Manifold Groups

Imbeddings of Three-Manifold Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 71
Release :
ISBN-10 : 9780821825341
ISBN-13 : 0821825348
Rating : 4/5 (41 Downloads)

Synopsis Imbeddings of Three-Manifold Groups by : Francisco González-Acuña

This paper deals with the two broad questions of how 3-manifold groups imbed in one another and how such imbeddings relate to any corresponding [lowercase Greek]Pi1-injective maps. In particular, we are interested in 1) determining which 3-manifold groups are no cohopfian, that is, which 3-manifold groups imbed properly in themselves, 2) determining the knot subgroups of a knot group, and 3) determining when surgery on a knot [italic]K yields a lens (or "lens-like") space and the relationship of such a surgery to the knot-subgroup structure of [lowercase Greek]Pi1([italic]S3 - [italic]K). Our work requires the formulation of a deformation theorem for [lowercase Greek]Pi1-injective maps between certain kinds of Haken manifolds and the development of some algebraic tools.

Orientation and the Leray-Schauder Theory for Fully Nonlinear Elliptic Boundary Value Problems

Orientation and the Leray-Schauder Theory for Fully Nonlinear Elliptic Boundary Value Problems
Author :
Publisher : American Mathematical Soc.
Total Pages : 145
Release :
ISBN-10 : 9780821825440
ISBN-13 : 0821825445
Rating : 4/5 (40 Downloads)

Synopsis Orientation and the Leray-Schauder Theory for Fully Nonlinear Elliptic Boundary Value Problems by : Patrick Fitzpatrick

The aim of this work is to develop an additive, integer-valued degree theory for the class of quasilinear Fredholm mappings. This class is sufficiently large that, within its framework, one can study general fully nonlinear elliptic boundary value problems. A degree for the whole class of quasilinear Fredholm mappings must necessarily accommodate sign-switching of the degree along admissible homotopies. The authors introduce ''parity'', a homotopy invariant of paths of linear Fredholm operators having invertible endpoints. The parity provides a complete description of the possible changes in sign of the degree and thereby permits use of the degree to prove multiplicity and bifurcation theorems for quasilinear Fredholm mappings. Applications are given to the study of fully nonlinear elliptic boundary value problems.

Enright-Shelton Theory and Vogan's Problem for Generalized Principal Series

Enright-Shelton Theory and Vogan's Problem for Generalized Principal Series
Author :
Publisher : American Mathematical Soc.
Total Pages : 122
Release :
ISBN-10 : 9780821825471
ISBN-13 : 082182547X
Rating : 4/5 (71 Downloads)

Synopsis Enright-Shelton Theory and Vogan's Problem for Generalized Principal Series by : Brian D. Boe

This book investigates the composition series of generalized principal series representations induced from a maximal cuspidal parabolic subgroup of a real reductive Lie group. Boe and Collingwood study when such representations are multiplicity-free (Vogan's Problem #3) and the problem of describing their composition factors in closed form. The results obtained are strikingly similar to those of Enright and Shelton for highest weight modules. Connections with two different flag variety decompositions are discussed.

$G$-Categories

$G$-Categories
Author :
Publisher : American Mathematical Soc.
Total Pages : 153
Release :
ISBN-10 : 9780821825433
ISBN-13 : 0821825437
Rating : 4/5 (33 Downloads)

Synopsis $G$-Categories by : Robert Gordon

A [italic]G-category is a category on which a group [italic]G acts. This work studies the 2-category [italic]G-cat of [italic]G-categories, [italic]G-functors (functors which commute with the action of [italic]G) and [italic]G-natural transformations (natural transformations which commute with the [italic]G-action). There is a particular emphasis on the relationship between a [italic]G-category and its stable subcategory, the largest sub-[italic]G-category on which [italic]G operates trivially. Also contained here are some very general applications of the theory to various additive [italic]G-categories and to [italic]G-topoi.

Axiomization of Passage from `Local' Structure to `Global' Object

Axiomization of Passage from `Local' Structure to `Global' Object
Author :
Publisher : American Mathematical Soc.
Total Pages : 121
Release :
ISBN-10 : 9780821825464
ISBN-13 : 0821825461
Rating : 4/5 (64 Downloads)

Synopsis Axiomization of Passage from `Local' Structure to `Global' Object by : Paul Feit

This paper offers a systematic approach to all mathematical theories with local/global behavior. To build objects with local and global aspects, on begins with a category of [script]C of allowed local structures, and somehow derives a category [script]C[superscript]gl of things which are 'locally' in [script]C. Some global objects, such as manifolds or schemes, can be represented as a sheaf of algebras on a topological base space; others, like algebraic spaces, are more technical. These theories share common structure--certain theorems on inverse limits, descent, and dependence on special class of morphism appear in all cases. Yet, classical proofs for universal properties proceed by case-by-case study. Separate examples require distinct arguments.

Constant Mean Curvature Immersions of Enneper Type

Constant Mean Curvature Immersions of Enneper Type
Author :
Publisher : American Mathematical Soc.
Total Pages : 90
Release :
ISBN-10 : 9780821825365
ISBN-13 : 0821825364
Rating : 4/5 (65 Downloads)

Synopsis Constant Mean Curvature Immersions of Enneper Type by : Henry C. Wente

This memoir is devoted to the case of constant mean curvature surfaces immersed in [bold]R3. We reduce this geometrical problem to finding certain integrable solutions to the Gauss equation. Many new and interesting examples are presented, including immersed cylinders in [bold]R3 with embedded Delaunay ends and [italic]n-lobes in the middle, and one-parameter families of immersed constant mean curvature tori in [bold]R3. We examine minimal surfaces in hyperbolic three-space, which is in some ways the most complicated case.