Plant Genome Diversity Volume 2

Plant Genome Diversity Volume 2
Author :
Publisher : Springer Science & Business Media
Total Pages : 360
Release :
ISBN-10 : 9783709111604
ISBN-13 : 3709111609
Rating : 4/5 (04 Downloads)

Synopsis Plant Genome Diversity Volume 2 by : Johann Greilhuber

This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.

Plant Genome Diversity Volume 1

Plant Genome Diversity Volume 1
Author :
Publisher : Springer Science & Business Media
Total Pages : 282
Release :
ISBN-10 : 9783709111291
ISBN-13 : 3709111293
Rating : 4/5 (91 Downloads)

Synopsis Plant Genome Diversity Volume 1 by : Jonathan Wendel

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.

Plant Genome Diversity

Plant Genome Diversity
Author :
Publisher :
Total Pages : 279
Release :
ISBN-10 : 3709111315
ISBN-13 : 9783709111314
Rating : 4/5 (15 Downloads)

Synopsis Plant Genome Diversity by :

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic residents of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.

Plant Genomes

Plant Genomes
Author :
Publisher : Karger Medical and Scientific Publishers
Total Pages : 155
Release :
ISBN-10 : 9783805584913
ISBN-13 : 3805584911
Rating : 4/5 (13 Downloads)

Synopsis Plant Genomes by : Jean-Nicolas Volff

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.

Plant Genome Diversity

Plant Genome Diversity
Author :
Publisher :
Total Pages : 279
Release :
ISBN-10 : OCLC:835906525
ISBN-13 :
Rating : 4/5 (25 Downloads)

Synopsis Plant Genome Diversity by : Jonathan F. Wendel

Plant Genome Diversity Volume 1

Plant Genome Diversity Volume 1
Author :
Publisher : Springer Science & Business Media
Total Pages : 282
Release :
ISBN-10 : 9783709111307
ISBN-13 : 3709111307
Rating : 4/5 (07 Downloads)

Synopsis Plant Genome Diversity Volume 1 by : Jonathan Wendel

In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.

Plant Genome: Biodiversity and Evolution, Vol. 1, Part E

Plant Genome: Biodiversity and Evolution, Vol. 1, Part E
Author :
Publisher : CRC Press
Total Pages : 424
Release :
ISBN-10 : STANFORD:36105130568335
ISBN-13 :
Rating : 4/5 (35 Downloads)

Synopsis Plant Genome: Biodiversity and Evolution, Vol. 1, Part E by : A K Sharma

Plant genetic engineering has revolutionized our ability to produce genetically improved plant varieties. A large portion of our major crops have undergone genetic improvement through the use of recombinant DNA techniques in which microorganisms play a vital role. The cross-kingdom transfer of genes to incorporate novel phenotypes into plants has utilized microbes at every step-from cloning and characterization of a gene to the production of a genetically engineered plant. This book covers the important aspects of Microbial Biotechnology in Agriculture and Aquaculture with and aim to improve crop yield.

Genetic Diversity and Erosion in Plants

Genetic Diversity and Erosion in Plants
Author :
Publisher : Springer
Total Pages : 439
Release :
ISBN-10 : 9783319259543
ISBN-13 : 3319259547
Rating : 4/5 (43 Downloads)

Synopsis Genetic Diversity and Erosion in Plants by : M.R. Ahuja

Genetic erosion is the loss of genetic diversity within a species. It can happen very quickly, due to catastrophic events, or changes in land use leading to habitat loss. But it can also occur more gradually and remain unnoticed for a long time. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization, and land clearing through deforestation and brush fires. In order to conserve biodiversity in plants, it is important to targets three independent levels that include ecosystems, species and genes. Genetic diversity is important to a species’ fitness, long-term viability, and ability to adapt to changing environmental conditions. Chapters in this book are written by leading geneticists, molecular biologists and other specialists on relevant topics on genetic erosion and conservation genetic diversity in plants. This divisible set of two volumes deals with a broad spectrum of topics on genetic erosion, and approaches to biodiversity conservation in crop plants and trees. Volume 1 deals with indicators and prevention of genetic erosion, while volume 2 covers genetic diversity and erosion in a number of plants species. These two volumes will also be useful to botanists, biotechnologists, environmentalists, policy makers, conservationists, and NGOs working to manage genetic erosion and biodiversity.

Applied Plant Genomics and Biotechnology

Applied Plant Genomics and Biotechnology
Author :
Publisher : Woodhead Publishing
Total Pages : 354
Release :
ISBN-10 : 9780081000717
ISBN-13 : 0081000715
Rating : 4/5 (17 Downloads)

Synopsis Applied Plant Genomics and Biotechnology by : Palmiro Poltronieri

Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes. - provides an overview on the ongoing projects and activities in the field of applied biotechnology - includes examples of different crops and applications to be exploited - reviews and discusses Plant Functional Genomic studies and the future developments in the field - explores the new technologies supporting the genetic improvement of plants

The Handbook of Plant Genome Mapping

The Handbook of Plant Genome Mapping
Author :
Publisher : John Wiley & Sons
Total Pages : 402
Release :
ISBN-10 : 9783527604432
ISBN-13 : 352760443X
Rating : 4/5 (32 Downloads)

Synopsis The Handbook of Plant Genome Mapping by : Khalid Meksem

While the complete sequencing of the genomes of model organisms such as a multitude of bacteria and archaea, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the mouse and human genomes have received much public attention, the deciphering of plant genomeswas greatly lagging behind. Up to now, only two plant genomes, one of the model plant Arabidopsis thaliana and one of the crop species rice (Oryza sativa) have been sequenced, though a series of other crop genome sequencing projects are underway. Notwithstanding this public bias towards genomics of animals and humans, it is nevertheless of great importance for basic and applied sciences and industries in such diverse fields as agriculture, breeding in particular, evolutionary genetics, biotechnology, and food science to know the composition of crop plant genomes in detail. It is equally crucial for a deeper understanding of the molecular basis of biodiversity and synteny. The Handbook of Genome Mapping: Genetic and Physical Mapping is the first book on the market to cover these hot topics in considerable detail, and is set apart by its combination of genetic and physical mapping. Throughout, each chapter begins with an easy-to-read introduction, also making the book the first reference designed for non-specialists and newcomers, too. In addition to being an outstanding bench work reference, the book is an excellent textbook for learning and teaching genomics, in particular for courses on genome mapping. It also serves as an up-to-date guide for seasoned researchers involved in the genetic and physical mapping of genomes, especially plant genomes.