Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment

Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment
Author :
Publisher : John Wiley & Sons
Total Pages : 293
Release :
ISBN-10 : 9781394197873
ISBN-13 : 139419787X
Rating : 4/5 (73 Downloads)

Synopsis Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment by : Sadanand Pandey

The concept of photoelectrochemistry applied to microbial fuel cells could be the future of sustainable wastewater treatment and for hydrogen recovery as a valuable energy source. With the increase of recalcitrant organic pollutants in industrial wastewater, the need for a sustainable bio-electrochemical process has become pressing in order to ensure that treatment processes are coupled with some beneficiation advantages. Microbial fuel cells combine wastewater treatment and biological power generation. However, the resistance of these organic pollutants to biological degradation requires further adjustment of the system to improve sustainability through maximization of energy production. Solar energy conversion using photocatalysis has drawn huge attention for its potential to provide renewable and sustainable energy. Furthermore, it might be the solution to serious environmental and energy-related problems. It has been widely understood for several years that the top global issues today are concerned with securing a clean supply of water and ensuring a reasonable price for clean energy. Researchers are studying advanced materials and processes to produce clean, renewable hydrogen fuel through photocatalytic and photoelectrocatalytic water splitting, as well as to reduce carbon dioxide from the air into fuels through photocatalysis. Limited progress is occurring in these areas. The purpose of this book is to comprehensively cover the evolvement in the conceptualization and application of photocatalytic fuel cells, as well as make a critical assessment of the contribution in the field of sustainable wastewater treatment and renewable energy production. This book contains nine specialized chapters that provide comprehensive coverage of the design of photocatalytic fuel cells and their applications, including environmental remediation, chemical synthesis, green energy generation, model simulation for scaling up processes and implementation, and most importantly maximization of hydrogen evolution, recovery, and applications. Audience A wide audience of academics, industrial researchers, and graduate students working in heterogeneous photocatalysis, fuel cells, sustainable chemistry, nanotechnology, chemical engineering, environmental protection, and surfaces and interfaces, will find this book useful. The book is also important for professionals, namely environmental managers, water treatment plants managers and operators, water authorities, government regulatory bodies officers, and environmentalists.

Photoelectrocatalysis

Photoelectrocatalysis
Author :
Publisher : Elsevier
Total Pages : 488
Release :
ISBN-10 : 9780128242421
ISBN-13 : 0128242426
Rating : 4/5 (21 Downloads)

Synopsis Photoelectrocatalysis by : Leonardo Palmisano

Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. Presents the fundamentals of photoelectrocatalysis Outlines photoelectrocatalytic green chemistry Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects

Electrochemical Water and Wastewater Treatment

Electrochemical Water and Wastewater Treatment
Author :
Publisher : Butterworth-Heinemann
Total Pages : 574
Release :
ISBN-10 : 9780128131619
ISBN-13 : 0128131616
Rating : 4/5 (19 Downloads)

Synopsis Electrochemical Water and Wastewater Treatment by : Carlos Alberto Martínez-Huitle

Electrochemical Water Treatment Methods provides the fundamentals and applications of electrochemical water treatment methods to treat industrial effluents. Sections provide an overview of the technology, its current state of development, and how it is making its way into industry applications. Other sections deal with historical developments and the fundamentals of 18 methods, including coupled methods, such as Electrocoagulation, Peroxi-Coagulation and Electro-Fenton treatments. In addition, users will find discussions that relate to industries such as Pulp and Paper, Pharmaceuticals, Textiles, and Urban/Domestic wastewater, amongst others. Final sections present advantages, disadvantages and ways to combine renewable energy sources and electrochemical methods to design sustainable facilities. Environmental and Chemical Engineers will benefit from the extensive collection of methods and industry focused application cases, but researchers in environmental chemistry will also find interesting examples on how methods can be transitioned from lab environments to practical applications. - Offers an excellent overview of the research advances and current applications of electrochemical technologies for water treatment - Explains, in a comprehensive way, the fundamentals of different electrochemical uses and applications of different technologies - Provides a large number of examples as evidence of practical applications of electrochemistry to environmental protection - Explores the combination possibilities with other treatment technologies or emerging technologies for destroying water pollutants

Advanced Oxidation Processes for Water and Wastewater Treatment

Advanced Oxidation Processes for Water and Wastewater Treatment
Author :
Publisher : IWA Publishing
Total Pages : 370
Release :
ISBN-10 : 9781843390176
ISBN-13 : 1843390175
Rating : 4/5 (76 Downloads)

Synopsis Advanced Oxidation Processes for Water and Wastewater Treatment by : Simon Parsons

The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.

Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment

Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment
Author :
Publisher : John Wiley & Sons
Total Pages : 320
Release :
ISBN-10 : 9781119631392
ISBN-13 : 1119631394
Rating : 4/5 (92 Downloads)

Synopsis Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment by : Elvis Fosso-Kankeu

Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment comprehensively covers a range of topics aiming to promote the implementation of photocatalysis at large scale through provision of facile and green methods for catalysts synthesis and elucidation of pollutants degradation mechanisms. This book is divided into two main parts namely “Synthesis of effective photocatalysts” (Part I) and “Mechanisms of the photocatalytic degradation of various pollutants” (Part II). The first part focuses on the exploration of various strategies to synthesize sustainable and effective photocatalysts. The second part of the book provides an insights into the photocatalytic degradation mechanisms and pathways under ultraviolet and visible light irradiation, as well as the challenges faced by this technology and its future prospects.

A Tio2 Photoelectrocatalytic System for Wastewater Detoxification and Disinfection

A Tio2 Photoelectrocatalytic System for Wastewater Detoxification and Disinfection
Author :
Publisher :
Total Pages : 438
Release :
ISBN-10 : OCLC:780330688
ISBN-13 :
Rating : 4/5 (88 Downloads)

Synopsis A Tio2 Photoelectrocatalytic System for Wastewater Detoxification and Disinfection by : Guiying Li

Abstract : This work systematically investigate the nanoparticulate TiO2 photocatalysis and photoelectrocatalysis based methods for decomposition, detoxification and disinfection of a series of biological contaminants ranged from small biological compounds such as amino acids and nucleotide bases, to large biological compounds including protein, lipid and DNA, to living microorganisms such as bacteria and virus. The small biological compounds (e.g., amino acids and nucleotide bases) are the basic building blocks of the large biological compounds (e.g., proteins and DNA), and the large biological compounds are the building blocks of the living microorganisms (e.g., bacteria and viruses). Due to the complicity involved, in order to understand the full spectrum of the decomposition, detoxification and disinfection mechanisms of living microorganisms, a bottom-up strategy was employed in this study. The photocatalytic and photoelectrocatalytic degradation of small biological compounds were firstly investigated to gain the necessary information for a better understanding of degradation mechanisms of large biological compounds. The photocatalytic and photoelectrocatalytic degradation of large biological compounds were then investigated to gain the necessary information for a better understanding of decomposition/disinfection mechanisms of living microorganisms. This was followed by the investigation of photocatalytic and photoelectrocatalytic decomposition/detoxification/disinfection of living microorganisms. Chapter 1 of the thesis provides comprehensive literature reviews of the present status of research developments relevant to this work and the justification for the research topic. Nanoparticulate TiO2 photoanode is a key element of the proposed research. Chapter 2 describes the fabrication and characterisation of the nanoparticulate TiO2 photoanode. The nanoparticulate TiO2 photoanode was successfully fabricated using a sol-gel method. The photoelectrocatalytic properties of the resultant TiO2 photoanodes were systematically evaluated using water, as well as organic model compounds in both bulk and thin-layer photoelectrochemical cells. The results indicated that the resultant photoanodes possess high photocatalytic activity. The measured net charge under the exhaustive conditions in a thin-layer photoelectrochemical cell is essentially the same as the theoretically required charge, demonstrating a superior oxidation power and 100% electron collection efficiency. Photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of small biological compounds such as amino acids and nucleotide bases were carried out in Chapters 3 and 4. These small biological compounds were found to be photocatalytically and photoelectrocatalytically degradable. The degradation efficiency of PEC method was found to be higher than that of PC method for all compounds investigated. The organic nitrogens in the original compounds can be oxidised to either NH3/NH4 + or NO3- or both, depending the chemical structures of the original compounds and the degradation methods used. Both experimental results and the theoretically calculated frontier electron densities values of (2FEDHOMO)2 and (FEDHOMO)2+(FEDLUMO)2 demonstrated that the reaction mechanisms/pathways of PEC processes differed remarkably from that of PC processes. As a part of the proposed 2bottom-up3 strategy, PC and PEC degradation of large biological compounds such as bovine serum albumin (BSA), lecithin and bacteria genomic DNA were performed in Chapter 5. A new method for estimating the theoretical charge required to mineralise these large biological compounds with unknown chemical formula was firstly developed and experimentally validated. The degradation efficiency of PEC method was found to be higher than that of PC method for all large biological compounds investigated. In Chapter 6, a bactericidal technique (PEC-Br) utilising in situ photoelectrocatalytically generated photohole (h+), Br2{u2022}- and active oxygen species (AOS) for instant inactivation and rapid decomposition of Gram-negative bacteria such as E. coli was proposed and experimentally validated. The method is capable of inactivating 99.90% and 100% of 9{u00D7}106 CFU/mL E. coli within 0.40 s and 1.57 s, respectively. To achieve the same inactivation effect, the PEC-Br method is 358 and 199 times faster than that of the PEC method, and 2250 and 764 times faster than that of the PC method. The Chapter 7 demonstrated the bactericidal technique developed in Chapter 6 can also be applied as a virucidal technique for rapid inactivation of viruses such as replication-deficient recombinant adenovirus (RDRADS). The PEC-Br method is capable of deactivating 99.77% and 100% of RDRADS within 14.32 s and 31.65 s, respectively. The final chapter of the thesis (Chapter 8) summarises the outcomes of this study and future work.

Photocatalytic Semiconductors

Photocatalytic Semiconductors
Author :
Publisher : Springer
Total Pages : 298
Release :
ISBN-10 : 9783319109992
ISBN-13 : 3319109995
Rating : 4/5 (92 Downloads)

Synopsis Photocatalytic Semiconductors by : Aracely Hernández-Ramírez

This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

Photoelectrocatalytic of Wastedwater

Photoelectrocatalytic of Wastedwater
Author :
Publisher : Booktango
Total Pages : 21
Release :
ISBN-10 : 9781468940343
ISBN-13 : 1468940341
Rating : 4/5 (43 Downloads)

Synopsis Photoelectrocatalytic of Wastedwater by : Abbey Ryerson

Introduction about basic rules to process polluted water. Also discussed about some innovated ways.

Modern Electrochemical Methods in Nano, Surface and Corrosion Science

Modern Electrochemical Methods in Nano, Surface and Corrosion Science
Author :
Publisher : BoD – Books on Demand
Total Pages : 354
Release :
ISBN-10 : 9789535115861
ISBN-13 : 9535115863
Rating : 4/5 (61 Downloads)

Synopsis Modern Electrochemical Methods in Nano, Surface and Corrosion Science by : Mahmood Aliofkhazraei

The basics and principles of new electrochemical methods and also their usage for fabrication and analysis of different nanostructures were discussed in this book. These methods consist of electrochemical methods in nanoscale (e.g. electrochemical atomic force microscopy and electrochemical scanning tunneling microscopy) and also electrochemical methods for fabrication of nanomaterials.