Perturbation Of Spectra In Hilbert Space
Download Perturbation Of Spectra In Hilbert Space full books in PDF, epub, and Kindle. Read online free Perturbation Of Spectra In Hilbert Space ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Kurt Otto Friedrichs |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 196 |
Release |
: 1965 |
ISBN-10 |
: 0821890581 |
ISBN-13 |
: 9780821890585 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Perturbation of Spectra in Hilbert Space by : Kurt Otto Friedrichs
Author |
: Tosio Kato |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 610 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662126783 |
ISBN-13 |
: 3662126788 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Perturbation theory for linear operators by : Tosio Kato
Author |
: Konrad Schmüdgen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 435 |
Release |
: 2012-07-09 |
ISBN-10 |
: 9789400747531 |
ISBN-13 |
: 9400747535 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Unbounded Self-adjoint Operators on Hilbert Space by : Konrad Schmüdgen
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
Author |
: Michael Sh. Birman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 316 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9789400945869 |
ISBN-13 |
: 9400945868 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Spectral Theory of Self-Adjoint Operators in Hilbert Space by : Michael Sh. Birman
It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order" , which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Author |
: Gilbert Helmberg |
Publisher |
: Elsevier |
Total Pages |
: 362 |
Release |
: 2014-11-28 |
ISBN-10 |
: 9781483164175 |
ISBN-13 |
: 1483164179 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Introduction to Spectral Theory in Hilbert Space by : Gilbert Helmberg
North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.
Author |
: Kurt O. Friedrichs |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 253 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461263968 |
ISBN-13 |
: 1461263964 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Spectral Theory of Operators in Hilbert Space by : Kurt O. Friedrichs
The present lectures intend to provide an introduction to the spectral analysis of self-adjoint operators within the framework of Hilbert space theory. The guiding notion in this approach is that of spectral representation. At the same time the notion of function of an operator is emphasized. The formal aspects of these concepts are explained in the first two chapters. Only then is the notion of Hilbert space introduced. The following three chapters concern bounded, completely continuous, and non-bounded operators. Next, simple differential operators are treated as operators in Hilbert space, and the final chapter deals with the perturbation of discrete and continuous spectra. The preparation of the original version of these lecture notes was greatly helped by the assistance of P. Rejto. Various valuable suggestions made by him and by R. Lewis have been incorporated. The present version of the notes contains extensive modifica tions, in particular in the chapters on bounded and unbounded operators. February, 1973 K.O.F. PREFACE TO THE SECOND PRINTING The second printing (1980) is a basically unchanged reprint in which a number of minor errors were corrected. The author wishes to thank Klaus Schmidt (Lausanne) and John Sylvester (New York) for their lists of errors. v TABLE OF CONTENTS I. Spectral Representation 1 1. Three typical problems 1 12 2. Linear space and functional representation.
Author |
: Carlos S. Kubrusly |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 203 |
Release |
: 2012-06-01 |
ISBN-10 |
: 9780817683283 |
ISBN-13 |
: 0817683283 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Spectral Theory of Operators on Hilbert Spaces by : Carlos S. Kubrusly
This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to apply spectral theory to their field.
Author |
: Gerald Teschl |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 322 |
Release |
: 2009 |
ISBN-10 |
: 9780821846605 |
ISBN-13 |
: 0821846604 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Mathematical Methods in Quantum Mechanics by : Gerald Teschl
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Author |
: K. O. Friedrichs |
Publisher |
: Amer Mathematical Society |
Total Pages |
: 178 |
Release |
: 1965 |
ISBN-10 |
: 0821811037 |
ISBN-13 |
: 9780821811030 |
Rating |
: 4/5 (37 Downloads) |
Synopsis Perturbation of Spectra in Hilbert Space by : K. O. Friedrichs
Author |
: Christophe Cheverry |
Publisher |
: Springer Nature |
Total Pages |
: 258 |
Release |
: 2021-05-06 |
ISBN-10 |
: 9783030674625 |
ISBN-13 |
: 3030674622 |
Rating |
: 4/5 (25 Downloads) |
Synopsis A Guide to Spectral Theory by : Christophe Cheverry
This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.