Perturbation Methods, Bifurcation Theory and Computer Algebra

Perturbation Methods, Bifurcation Theory and Computer Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 254
Release :
ISBN-10 : 9781461210603
ISBN-13 : 1461210607
Rating : 4/5 (03 Downloads)

Synopsis Perturbation Methods, Bifurcation Theory and Computer Algebra by : Richard H. Rand

Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Perturbation Methods in Science and Engineering

Perturbation Methods in Science and Engineering
Author :
Publisher : Springer Nature
Total Pages : 584
Release :
ISBN-10 : 9783030734626
ISBN-13 : 3030734625
Rating : 4/5 (26 Downloads)

Synopsis Perturbation Methods in Science and Engineering by : Reza N. Jazar

Perturbation Methods in Science and Engineering provides the fundamental and advanced topics in perturbation methods in science and engineering, from an application viewpoint. This book bridges the gap between theory and applications, in new as well as classical problems. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications in different engineering disciplines. The book begins with a clear description on limits of mathematics in providing exact solutions and goes on to show how pioneers attempted to search for approximate solutions of unsolvable problems. Through examination of special applications and highlighting many different aspects of science, this text provides an excellent insight into perturbation methods without restricting itself to a particular method. This book is ideal for graduate students in engineering, mathematics, and physical sciences, as well as researchers in dynamic systems.

Singularities and Groups in Bifurcation Theory

Singularities and Groups in Bifurcation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 480
Release :
ISBN-10 : 9781461250340
ISBN-13 : 146125034X
Rating : 4/5 (40 Downloads)

Synopsis Singularities and Groups in Bifurcation Theory by : Martin Golubitsky

This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 610
Release :
ISBN-10 : 9780387227108
ISBN-13 : 0387227105
Rating : 4/5 (08 Downloads)

Synopsis Elements of Applied Bifurcation Theory by : Yuri Kuznetsov

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 529
Release :
ISBN-10 : 9781475724219
ISBN-13 : 1475724217
Rating : 4/5 (19 Downloads)

Synopsis Elements of Applied Bifurcation Theory by : Yuri A. Kuznetsov

A solid basis for anyone studying the dynamical systems theory, providing the necessary understanding of the approaches, methods, results and terminology used in the modern applied-mathematics literature. Covering the basic topics in the field, the text can be used in a course on nonlinear dynamical systems or system theory. Special attention is given to efficient numerical implementations of the developed techniques, illustrated by several examples from recent research papers. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used, making this book suitable for advanced undergraduate or graduate students in applied mathematics, as well as for researchers in other disciplines who use dynamical systems as model tools in their studies.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows
Author :
Publisher : Springer Science & Business Media
Total Pages : 561
Release :
ISBN-10 : 9781461301851
ISBN-13 : 1461301858
Rating : 4/5 (51 Downloads)

Synopsis Stability and Transition in Shear Flows by : Peter J. Schmid

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Analysis and Simulation of Chaotic Systems

Analysis and Simulation of Chaotic Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 321
Release :
ISBN-10 : 9781475722758
ISBN-13 : 1475722753
Rating : 4/5 (58 Downloads)

Synopsis Analysis and Simulation of Chaotic Systems by : Frank C. Hoppensteadt

Analysis and Simulation of Chaotic Systems is a text designed to be used at the graduate level in applied mathematics for students from mathematics, engineering, physics, chemistry and biology. The book can be used as a stand-alone text for a full year course or it can be heavily supplemented with material of more mathematical, more engineering or more scientific nature. Computations and computer simulations are used throughout this text to illustrate phenomena discussed and to supply readers with probes to use on new problems.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 296
Release :
ISBN-10 : 9781489900302
ISBN-13 : 1489900306
Rating : 4/5 (02 Downloads)

Synopsis Inverse Problems for Partial Differential Equations by : Victor Isakov

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Configurational Forces as Basic Concepts of Continuum Physics

Configurational Forces as Basic Concepts of Continuum Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 248
Release :
ISBN-10 : 9780387226569
ISBN-13 : 0387226567
Rating : 4/5 (69 Downloads)

Synopsis Configurational Forces as Basic Concepts of Continuum Physics by : Morton E. Gurtin

Included is a presentation of configurational forces within a classical context and a discussion of their use in areas as diverse as phase transitions and fracture.

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 133
Release :
ISBN-10 : 9781461235064
ISBN-13 : 1461235065
Rating : 4/5 (64 Downloads)

Synopsis Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations by : P. Constantin

This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.